1,244 research outputs found

    Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is a nextgeneration experiment aimed to study neutrino oscillation. Itslong-baseline configuration will exploit a Near Detector (ND) and aFar Detector (FD) located at a distance of ‚ąľ1300 km. The FDwill consist of four Liquid Argon Time Projection Chamber (LAr TPC)modules. A Photon Detection System (PDS) will be used to detect thescintillation light produced inside the detector after neutrinointeractions. The PDS will be based on light collectors coupled toSilicon Photomultipliers (SiPMs). Different photosensortechnologies have been proposed and produced in order to identifythe best samples to fullfill the experiment requirements. In thispaper, we present the procedure and results of a validation campaignfor the Hole Wire Bonding (HWB) MPPCs samples produced by HamamatsuPhotonics K.K.¬†(HPK) for the DUNE experiment, referring to them as`SiPMs'. The protocol for a characterization at cryogenictemperature (77 K) is reported. We present the down-selectioncriteria and the results obtained during the selection campaignundertaken, along with a study of the main sources of noise of theSiPMs including the investigation of a newly observed phenomenon inthis field

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Phytochemical and functional characterization of cultivated varieties of Morus alba L. fruits grown in Italy

    No full text
    : Morus alba L. fruits are considered functional foods with an important nutritional value for their high content of polyphenols. Therefore, the type and level of phytochemicals of the soroses from 13&nbsp;M. alba cultivars grown in Italy were characterized due to the lack of data available about their nutraceutical properties. Mature M. alba fruits exhibited variable polyphenol, flavonoid, anthocyanin, proanthocyanins, and 1-deoxynojirimycin contents which resulted in different antioxidant and őĪ-glucosidase inhibitory activities. Regression models built on UHPLC-HRMS results revealed a strong correlation between the expression of quercetin derivatives, cyanidin 3-O-glucoside, caffeoyl methyl quinates, and 5,5'-dehydrodivanillic acid, and the biological activity of each fruit. On another note, principal component analysis revealed that the quantity of caffeoyl/dicaffeoyl methyl quinate, caffeoylquinic acids, and quercetin derivatives decreased during ripening. The results on the compositional and functional characterization of mature M. alba fruits might improve their consumption and economic value in Italy

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Euclid: Improving the efficiency of weak lensing shear bias calibration. Pixel noise cancellation and the response method on trial

    No full text
    International audienceTo obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear measurement requires calibration using galaxy image simulations. We study the efficiency of different noise cancellation methods that aim at reducing the simulation volume required to reach a given precision in the shear measurement. Explicitly, we compared fit methods with different noise cancellations and a method based on responses. We used GalSim to simulate galaxies both on a grid and at random positions in larger scenes. Placing the galaxies at random positions requires their detection, which we performed with SExtractor. On the grid, we neglected the detection step and, therefore, the potential detection bias arising from it. The shear of the simulated images was measured with the fast moment-based method KSB, for which we note deviations from purely linear shear measurement biases. For the estimation of uncertainties, we used bootstrapping as an empirical method. We find that each method we studied on top of shape noise cancellation can further increase the efficiency of calibration simulations. The improvement depends on the considered shear amplitude range and the type of simulations (grid-based or random positions). The response method on a grid for small shears provides the biggest improvement. In the more realistic case of randomly positioned galaxies, we still find an improvement factor of 70 for small shears using the response method. Alternatively, the runtime can be lowered by a factor of 7 already using pixel noise cancellation on top of shape noise cancellation. Furthermore, we demonstrate that the efficiency of shape noise cancellation can be enhanced in the presence of blending if entire scenes are rotated instead of individual galaxies

    Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is a nextgeneration experiment aimed to study neutrino oscillation. Itslong-baseline configuration will exploit a Near Detector (ND) and aFar Detector (FD) located at a distance of ‚ąľ1300 km. The FDwill consist of four Liquid Argon Time Projection Chamber (LAr TPC)modules. A Photon Detection System (PDS) will be used to detect thescintillation light produced inside the detector after neutrinointeractions. The PDS will be based on light collectors coupled toSilicon Photomultipliers (SiPMs). Different photosensortechnologies have been proposed and produced in order to identifythe best samples to fullfill the experiment requirements. In thispaper, we present the procedure and results of a validation campaignfor the Hole Wire Bonding (HWB) MPPCs samples produced by HamamatsuPhotonics K.K.¬†(HPK) for the DUNE experiment, referring to them as`SiPMs'. The protocol for a characterization at cryogenictemperature (77 K) is reported. We present the down-selectioncriteria and the results obtained during the selection campaignundertaken, along with a study of the main sources of noise of theSiPMs including the investigation of a newly observed phenomenon inthis field

    Euclid preparation. XXX. Evaluating the weak lensing cluster mass biases using the Three Hundred Project hydrodynamical simulations

    No full text
    International audienceThe photometric catalogue of galaxy clusters extracted from ESA Euclid data is expected to be very competitive for cosmological studies. Using state-of-the-art hydrodynamical simulations, we present systematic analyses simulating the expected weak lensing profiles from clusters in a variety of dynamic states and at wide range of redshifts. In order to derive cluster masses, we use a model consistent with the implementation within the Euclid Consortium of the dedicated processing function and find that, when jointly modelling mass and the concentration parameter of the Navarro-Frenk-White halo profile, the weak lensing masses tend to be, on average, biased low with respect to the true mass. Using a fixed value for the concentration, the mass bias is diminished along with its relative uncertainty. Simulating the weak lensing signal by projecting along the directions of the axes of the moment of inertia tensor ellipsoid, we find that orientation matters: when clusters are oriented along the major axis the lensing signal is boosted, and the recovered weak lensing mass is correspondingly overestimated. Typically, the weak lensing mass bias of individual clusters is modulated by the weak lensing signal-to-noise ratio, and the negative mass bias tends to be larger toward higher redshifts. However, when we use a fixed value of the concentration parameter the redshift evolution trend is reduced. These results provide a solid basis for the weak-lensing mass calibration required by the cosmological application of future cluster surveys from Euclid and Rubin
    • ‚Ķ
    corecore