79 research outputs found

    Diffusion based degradation mechanisms in giant magnetoresistive spin valves

    Full text link
    Spin valve systems based on the giant magnetoresistive (GMR) effect as used for example in hard disks and automotive applications consist of several functional metallic thin film layers. We have identified by secondary ion mass spectrometry (SIMS) two main degradation mechanisms: One is related to oxygen diffusion through a protective cap layer, and the other one is interdiffusion directly at the functional layers of the GMR stack. By choosing a suitable material as cap layer (TaN), the oxidation effect can be suppressed.Comment: 3 pages, 3 figures. to be published in Appl. Phys. Let

    Preparation of Metal-Containing Diamond-Like Carbon Films by Magnetron Sputtering and Plasma Source Ion Implantation and Their Properties

    Get PDF
    Metal-containing diamond-like carbon (Me-DLC) films were prepared by a combination of plasma source ion implantation (PSII) and reactive magnetron sputtering. Two metals were used that differ in their tendency to form carbide and possess a different sputter yield, that is, Cu with a relatively high sputter yield and Ti with a comparatively low one. The DLC film preparation was based on the hydrocarbon gas ethylene (C2H4). The preparation technique is described and the parameters influencing the metal content within the film are discussed. Film properties that are changed by the metal addition, such as structure, electrical resistivity, and friction coefficient, were evaluated and compared with those of pure DLC films as well as with literature values for Me-DLC films prepared with a different hydrocarbon gas or containing other metals

    Surface Structuring of Diamond-Like Carbon Films by Chemical Etching of Zinc Inclusions

    Get PDF
    A diamond-like carbon (DLC) film with a nanostructured surface can be produced in a two-step process. At first, a metal-containing DLC film is deposited. Here, the combination of plasma source ion implantation using a hydrocarbon gas and magnetron sputtering of a zinc target was used. Next, the metal particles within the surface are dissolved by an etchant (HNO₃:H₂O solution in this case). Since Zn particles in the surface of Zn-DLC films have a diameter of 100–200 nm, the resulting surface structures possess the same dimensions, thus covering a range that is accessible neither by mask deposition techniques nor by etching of other metal-containing DLC films, such as Cu-DLC. The surface morphology of the etched Zn-DLC films depends on the initial metal content of the film. With a low zinc concentration of about 10 at.%, separate holes are produced within the surface. Higher zinc concentrations (40 at.% or above) lead to a surface with an intrinsic roughness

    Self-organized 2D nanopatterns after low-coverage Ga adsorption on Si (1 1 1)

    Get PDF
    The evolution of the Si(1 1 1) surface after submonolayer deposition of Ga has been observedin situby low-energy electron microscopy and scanning tunnelling microscopy. A phase separation of Ga-terminated-R 30° reconstructed areas and bare Si(1 1 1)-7 × 7 regions leads to the formation of a two-dimensional nanopattern. The shape of this pattern can be controlled by the choice of the surface miscut direction, which is explained in terms of the anisotropy of the domain boundary line energy and a high kink-formation energy. A general scheme for the nanopattern formation, based on intrinsic properties of the Si(1 1 1) surface, is presented. Experiments performed with In instead of Ga support this scheme

    adsorbate induced self ordering of germanium nanoislands on si 113

    Get PDF
    The impact of Ga preadsorption on the spatial correlation of nanoscale three-dimensional (3D) Ge-islands has been investigated by low-energy electron microscopy and low-energy electron diffraction. Submonolayer Ga adsorption leads to the formation of a 2D chemical nanopattern, since the Ga-terminated (2×2) domains exclusively decorate the step edges of the Si(113) substrate. Subsequent Ge growth on such a partially Ga-covered surface results in Ge 3D islands with an increased density as compared to Ge growth on clean Si(113). However, no pronounced alignment of the Ge islands is observed. Completely different results are obtained for Ga saturation coverage, which results in the formation of (112) and (115) facets regularly arranged with a periodicity of about 40 nm. Upon Ge deposition, Ge islands are formed at a high density of about 1.3×1010 cm−2. These islands are well ordered as they align at the substrate facets. Moreover, the facet array induces a reversal of the Ge islands' shape anisotropy as compared to growth on planar Si(113) substrates

    Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. For effective treatment, local control of the tumor is absolutely critical, because the chances of long term survival are <10% and might effectively approach zero if a complete surgical resection of the tumor is not possible. Up to date there is no curative treatment protocol for patients with non-resectable osteosarcomas, who are excluded from current osteosarcoma trials, e.g. <it>EURAMOS1</it>. Local photon radiotherapy has previously been used in small series and in an uncontrolled, highly individualized fashion, which, however, documented that high dose radiotherapy can, in principle, be used to achieve local control. Generally the radiation dose that is necessary for a curative approach can hardly be achieved with conventional photon radiotherapy in patients with non-resectable tumors that are usually located near radiosensitive critical organs such as the brain, the spine or the pelvis. In these cases particle Radiotherapy (proton therapy (PT)/heavy ion therapy (HIT) may offer a promising new alternative. Moreover, compared with photons, heavy ion beams provide a higher physical selectivity because of their finite depth coverage in tissue. They achieve a higher relative biological effectiveness. Phase I/II dose escalation studies of HIT in adults with non-resectable bone and soft tissue sarcomas have already shown favorable results.</p> <p>Methods/Design</p> <p>This is a monocenter, single-arm study for patients ≥ 6 years of age with non-resectable osteosarcoma. Desired target dose is 60-66 Cobalt Gray Equivalent (Gy E) with 45 Gy PT (proton therapy) and a carbon ion boost of 15-21 GyE. Weekly fractionation of 5-6 × 3 Gy E is used. PT/HIT will be administered exclusively at the Ion Radiotherapy Center in Heidelberg. Furthermore, FDG-PET imaging characteristics of non-resectable osteosarcoma before and after PT/HIT will be investigated prospectively. Systemic disease before and after PT/HIT is targeted by standard chemotherapy protocols and is not part of this trial.</p> <p>Discussion</p> <p>The primary objectives of this trial are the determination of feasibility and toxicity of HIT. Secondary objectives are tumor response, disease free survival and overall survival. The aim is to improve outcome for patients with non-resectable osteosarcoma.</p> <p>Trail Registration</p> <p>Registration number (ClinicalTrials.gov): NCT01005043</p

    Mass Spectrometry in Semiconductor Research

    No full text

    Diffusion studies in amorphous NiZrAl alloys

    No full text

    Cation self and impurity diffusion in poly-crystalline La 0.9 Sr 0.1 Ga 0.9 Mg 0.1 O 2.9

    No full text
    Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline samples of doped lanthanum gallate, La0.9Sr0.1Ga0.9Mg0.1O2.9, was investigated by SIMS for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 36Fe are occupying B-sites in the perovskite-structure, To explain these experimental findings we propose a defect cluster containing cation vacancies of both the A- and the B-sublattice and anion vacancies as well

    Comparison of the influence of titanium and chromium adhesion layers on the properties of sol-gel derived NKN thin films

    No full text
    Lead-free (Na0.5K0.5)NbO3 (NKN) thin films were prepared on Pt/X/SiO2/Si substrates (with the adhesion promoters X = Ti, Cr) by a sol-gel process with and without post-annealing treatment. The effect of the diffusion of the adhesion layer elements Ti and Cr into the NKN film was analysed by secondary ion mass spectrometry, scanning electron microscopy pictures, X-ray diffraction (XRD), and leakage current measurements. It turned out that Cr diffuses into the films to a higher extent than Ti. The high amount of Cr diffusion led to the formation of a secondary phase, as seen in the XRD pattern, and to pore formation on the surface of the NKN films. In contrast, the films with Ti adhesion layer were single phase NKN without pore formation. Also, the leakage current measurements showed a strong influence of the Cr diffusion. The leakage current of the films with Cr adhesion layer was about four orders of magnitude higher than that of the films with Ti adhesion layer. The study shows the strong influence of the adhesion layer of the substrate on the properties of NKN films
    • …