170 research outputs found

    Dietary supplements in retinal diseases, glaucoma, and other ocular conditions

    Get PDF
    Environmental pollution, inadequate eating habits and unhealthy lifestyles have led to a tremendous increase in ocular diseases worldwide. Given the costly treatments that are currently available for the most common and threatening eye diseases (such as cataract, dry eye disorder, or diabetic retinopathy), curing these diseases or preventing refractive errors by taking nutraceuticals and natural compounds that are present in our daily diet is a very valuable intervention. The eyes are the most important part of our visual system and require micronutrients such as vitamins, carotenoids, trace metals, and omega-3 fatty acids in order to function properly and to protect themselves against light-induced and age-mediated degenerative disorders. The Mediterranean Diet (MedDiet) has been in the limelight since the 1980s because of the several health benefits it provides, including eye health. MedDiet is characterized by the consumption of small amounts of red meat, while emphasizing the intake of fish, eggs, nuts, legumes, citrus fruits, green vegetables, olives and their derivatives, especially olive oil, and dairy products in a proportionate manner, in order to achieve the maximum health benefits. The antioxidant, anti-inflammatory, and neuroprotective properties of these foods – both when used as an ingredient in the dietary regime or as a source of nutritional supplements – have shown promising results in the management of chronic degenerative ocular diseases, both in animal models and in human subjects. In this chapter, we will focus on the importance of MedDiet and natural compounds for the visual system and its role in slowing down age-related ocular degeneration

    Differential vulnerability of retinal layers to early age-related macular degeneration: evidence by SD-OCT segmentation analysis.

    Get PDF
    PURPOSE We evaluated layer-by-layer retinal thickness in spectral-domain optical coherence tomography (SD-OCT), determined by automated segmentation analysis (ASA) software in healthy and early age-related maculopathy (ARM) eyes. METHODS There were 57 eyes (specifically, 19 healthy eyes under 60 years old, 19 healthy eyes over 60, and 19 ARM eyes) recruited into this cross-sectional study. The mean ages were 36.78 (SD, ±13.82), 69.89 (SD, ±6.14), and 66.10 (SD, ±8.67) years, respectively, in the three study groups. The SD-OCT scans were transferred into a dedicated software program that performed automated segmentation of different retinal layers. RESULTS Automated layer segmentation showed clear boundaries between the following layers: retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCL+IPL), inner nuclear layer plus outer plexiform layer (INL+OPL), outer nuclear layer (ONL), and RPE complex. The thickness of the RNFL, ONL, and RPE layers did not show a statistically significant change across the three groups by ANOVA (P = 0.10, P = 0.09, P = 0.15, respectively). The thickness of GCL+IPL and INL+OPL was significantly different across the groups (P < 0.01), being reduced in the ARM eyes compared to healthy eyes, under and over 60 years old. CONCLUSIONS The early morphologic involvement of the GCL+IPL and INL+OPL layers in ARM eyes, as revealed by the ASA, could be related to early anatomic changes described in the inner retina of ARM eyes. This finding may represent a morphologic correlation to the deficits in postreceptoral retinal function in ARM eyes

    Conjunctivally Applied BDNF Protects Photoreceptors from Light-Induced Damage

    Get PDF
    Purpose: To test whether the topical eye treatment with BDNF prevents the effects of continuous light exposure (LE) in the albino rat retina. Methods: Two groups of albino rats were used. The first group of rats received an intraocular injection of BDNF (2 lL, 1 lg/lL) before LE, while the second group was treated with one single drop of BDNF (10 lL, 12 lg/lL) dissolved in different types of solutions (physiological solution, the polysaccharide fraction of Tamarind gum, TSP, and sodium carboxy methyl cellulose), at the level of conjunctival fornix before LE. The level of BDNF in the retina and optic nerve was determined by enzyme-linked immunosorbent assay. We recorded the flash electroretinogram (fERG) in dark adapted rats 1 week after LE. At the end of the recording session, the retinas were removed and labeled so that the number of photoreceptors nuclear rows and thickness of the outer nuclear layer was analyzed. Results: Intravitreal injection of BDNF before LE prevented fERG impairment. Different ophthalmic preparations were used for topical eye application; the TSP resulted the most suitable vehicle to increase BDNF level in the retina and optic nerve. Topical eye application with BDNF/TSP before LE partially preserved both fERG response and photoreceptors. Conclusions: Topical eye treatment with BDNF represents a suitable, noninvasive tool to increase the retinal content of BDNF up to a level capable of exerting neuroprotection toward photoreceptors injured by prolonged LE. Translational Relevance: A collyrium containing BDNF may serve as an effective, clinically translational treatment against retinal degeneration

    Impaired Ca2+ sensitivity of a novel GCAP1 variant causes cone dystrophy and leads to abnormal synaptic transmission between photoreceptors and bipolar cells

    Get PDF
    Guanylate cyclase-activating protein 1 (GCAP1) is involved in the shutdown of the phototransduction cascade by regulating the enzymatic activity of retinal guanylate cyclase via a Ca2+/cGMP negative feedback. While the phototransduction-associated role of GCAP1 in the photoreceptor outer segment is widely established, its implication in synaptic transmission to downstream neurons remains to be clarified. Here, we present clinical and biochemical data on a novel isolate GCAP1 variant leading to a double amino acid substitution (p.N104K and p.G105R) and associated with cone dystrophy (COD) with an unusual phenotype. Severe alterations of the electroretinogram were observed under both scotopic and photopic conditions, with a negative pattern and abnormally attenuated b-wave component. The biochemical and biophysical analysis of the heterologously expressed N104K-G105R variant corroborated by molecular dynamics simulations highlighted a severely compromised Ca2+-sensitivity, accompanied by minor structural and stability alterations. Such differences reflected on the dysregulation of both guanylate cyclase isoforms (RetGC1 and RetGC2), resulting in the constitutive activation of both enzymes at physiological levels of Ca2+. As observed with other GCAP1-associated COD, perturbation of the homeostasis of Ca2+ and cGMP may lead to the toxic accumulation of second messengers, ultimately triggering cell death. However, the abnormal electroretinogram recorded in this patient also suggested that the dysregulation of the GCAP1-cyclase complex further propagates to the synaptic terminal, thereby altering the ON-pathway related to the b-wave generation. In conclusion, the pathological phenotype may rise from a combination of second messengers' accumulation and dysfunctional synaptic communication with bipolar cells, whose molecular mechanisms remain to be clarified

    Macular Impairment in Fabry Disease: A Morpho-functional Assessment by Swept-Source OCT Angiography and Focal Electroretinography.

    Get PDF
    Purpose Fabry disease (FD) is a multiorgan X-linked condition characterized by a deficiency of the lysosomal enzyme alpha-galactosidase A, resulting in a progressive intralysosomal deposit of globotriaosylceramide. The aim of this study was to evaluate the macular ultrastructure of the vascular network using optical coherence tomography angiography (OCTA) and to evaluate macular function using focal electroretinography (fERG) in Fabry patients (FPs). Methods A total of 20 FPs (38 eyes, mean age 57 ± 2.12 SD, range of 27-80 years) and 17 healthy controls (27 eyes, mean age 45 years ± 20.50 SD, range of 24-65 years) were enrolled in the study. Color fundus photography, swept-source optical coherence tomography (SS-OCT), OCTA and fERG were performed in all subjects. The OCTA foveal avascular zone (FAZ), vasculature structure, superficial and deep retinal plexus densities (images of 4.5 × 4.5 mm) and fERG amplitudes were measured. Group differences were statistically assessed by Student's t-test and ANOVA. Results In the FP group, the FAZ areas of the superficial and deep plexuses were enlarged (P = 0.036, t = 2.138; P < 0.001, t = -3.889, respectively), the vessel density was increased in the superficial plexus, and the fERG amplitude was reduced (P < 0.001, t = -10.647) compared with those in healthy controls. No significant correlations were found between the structural and functional data. Conclusions OCTA vascular abnormalities and reduced fERG amplitudes indicate subclinical signs of microangiopathy with early retinal dysfunction in FPs. This study highlights the relevance of OCTA imaging analysis in the identification of abnormal macular vasculature as an ocular hallmark of FD

    Acquired Resilience: An Evolved System of Tissue Protection in Mammals.

    Get PDF
    This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system \u27acquired resilience\u27. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life

    Intravitreal Fluocinolone Acetonide for Diabetic Macular Edema: Long-Term Effect and Structure/Function Correlation

    Get PDF
    The long-term effect of intravitreal Fluocinolone acetonide (FAc) on retinal morphology and function in diabetic macular edema (DME) was investigated. Seventeen eyes of twelve consecutive DME patients, treated by intravitreal FAc, were retrospectively evaluated. Retinal morphology was assessed with central macular thickness (CMT). Retinal function was assessed by best-corrected visual acuity (BCVA) and cone b-wave and photopic negative response (PhNR). The main outcome was a mean change in CMT at month 24. The secondary outcomes were changes in cone b-wave and PhNR at month 24. The incidence of adverse events was also recorded. Mean CMT decreased from 406.52 mu m (+/- 138.74) at baseline to 310 mu m (+/- 130.39) at 24 months (p = 0.008). No significant changes in the other parameters were found. At baseline, BCVA and PhNR amplitude were negatively correlated (r = -0.55) with CMT. At the end of follow-up, the change in CMT was negatively correlated with baseline CMT (r = -0.53, p = 0.03) and positively correlated with baseline PhNR amplitude (r = 0.58, p &lt; 0.01). A significant, long-term reduction in CMT was observed in DME patients after FAc implant. The anti-edema effect tended to be stronger in patients with the poorest baseline retinal morphology (CMT) and function (PhNR). Structure/function correlations might help to characterize the patients who may benefit from this treatment

    Long-Term Structural and Functional Assessment of Doyne Honeycomb Retinal Dystrophy following Nanosecond 2RT Laser Treatment: A Case Series

    Get PDF
    Introduction: Doyne honeycomb retinal dystrophy (DHRD), or autosomal dominant radial drusen, is a genetic disease caused by pathogenic variants of the epidermal growth factor (EGF)-containing fibulin-like extracellular matrix protein 1 EFEMP1 gene and is characterized by the formation of subretinal drusenoid deposits. In a previous study, we reported the short-term beneficial effects of nanosecond laser treatment (2RT) on retinal function in DHRD. The aim of the present report was to describe the findings of a long-term follow-up of retinal structure/function in a small case series of patients with DHRD who underwent 2RT treatment. Case Presentation: Three DHRD patients (case 1, male and cases 2 and 3, two sister females, age range 41–46) with EFEMP1 pathogenic variant (c.1033C&gt;T; p.R345W) and drusenoid deposits at the posterior pole were examined at baseline and after 2RT treatment, at regular intervals (every 2–4 months) up to 30 months. All 3 patients underwent one or two treatment sessions in one or both eyes during the follow-up period. Case 3 was treated with only the left eye (LE). Each patient underwent a full ophthalmologic examination, spectral domain optical coherence tomography (OCT), central perimetry with frequency doubling technology, and mesopic and photopic Ganzfeld electroretinograms. Compared to baseline findings, during follow-up, visual acuity improved in both eyes in case 1 and LE in case 2, while it decreased in the right eye in case 2 and LE in case 3; perimetric sensitivity was stable in case 1 and improved in both eyes in cases 2 and 3; and electroretinogram amplitude improved in cases 1 and 2 and was stable in case 3 (both eyes). OCT central macular thickness and retinal structure were stable in all cases. None of the patients had treatment-related side effects. Conclusion: This is the first report showing that in a long-term follow-up, 2RT treatment in DHRD may improve or stabilize some retinal function parameters without significant structural changes

    Bilateral Symmetry of Visual Function Loss in Cone-Rod Dystrophies.

    Get PDF
    PURPOSE: To investigate bilateral symmetry of visual impairment in cone-rod dystrophy (CRD) patients and understand the feasibility of clinical trial designs treating one eye and using the untreated eye as an internal control. METHODS: This was a retrospective study of visual function loss measures in 436 CRD patients followed at the Ophthalmology Department of the Catholic University in Rome. Clinical measures considered were best-corrected visual acuity, focal macular cone electroretinogram (fERG), and Ganzfeld cone-mediated and rod-mediated electroretinograms. Interocular agreement in each of these clinical indexes was assessed by t- and Wilcoxon tests for paired samples, structural (Deming) regression analysis, and intraclass correlation. Baseline and follow-up measures were analyzed. A separate analysis was performed on the subset of 61 CRD patients carrying likely disease-causing mutations in the ABCA4 gene. RESULTS: Statistical tests show a very high degree of bilateral symmetry in the extent and progression of visual impairment in the fellow eyes of CRD patients. CONCLUSIONS: These data contribute to a better understanding of CRDs and support the feasibility of clinical trial designs involving unilateral eye treatment with the use of fellow eye as internal control

    Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: a preliminary report.

    Get PDF
    Abstract BACKGROUND: To determine whether the functional effects of oral supplementation with Saffron, a natural compound that proved to be neuroprotective in early age-related macular degeneration, are influenced by complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) risk genotypes. METHODS: Thirty-three early AMD patients, screened for CFH (rs1061170) and ARMS2 (rs10490924) polymorphisms and receiving Saffron oral supplementation (20 mg/day) over an average period of treatment of 11 months (range, 6--12), were longitudinally evaluated by clinical examination and focal electroretinogram (fERG)-derived macular (18[degree sign]) flicker sensitivity estimate. fERG amplitude and macular sensitivity, the reciprocal value of the estimated fERG amplitude threshold, were the main outcome measures. RESULTS: After three months of supplementation, mean fERG amplitude and fERG sensitivity improved significantly when compared to baseline values (p &lt; 0.01). These changes were stable throughout the follow-up period. No significant differences in clinical and fERG improvements were observed across different CFH or ARMS2 genotypes. CONCLUSIONS: The present results indicate that the functional effect of Saffron supplementation in individual AMD patients is not related to the major risk genotypes of disease
    • …
    corecore