1,146 research outputs found

    Altered circadian food anticipatory activity rhythms in PACAP receptor 1 (PAC1) deficient mice

    Get PDF
    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved

    A peptide with N-terminal histidine and C-terminal isoleucine amide (PHI) and vasoactive intestinal peptide (VIP) are copackaged in myenteric neurones of the guinea pig ileum.

    Get PDF
    When cytoplasmic extracts of the myenteric plexus of guinea pig ileum are submitted to centrifugal density gradient separation in a zonal rotor, conditions which separate storage particles containing substance P, somatostatin and VIP from each other, PHI copurifies with VIP. The two immunoreactivities cannot be separated by particle exclusion chromatography, which depends on size rather than density. It is concluded that the posttranslational cleavage of the propeptide or precursor to PHI and VIP occurs after packaging into these storage particles

    Konkave 1,10-Phenanthroline: ein neuer Zugang durch übergangsmetallkatalysierte Reaktionen. Neue Liganden für Kupfer(I)-katalysierte Cyclopropanierungen von Alkenen mit Diazoacetaten.

    Get PDF
    In dieser Arbeit wurde durch eine Kombination von übergangsmetallkatalysierten Reaktionen (Suzuki-Kreuzkupplung, Ringschlussmetathese und katalytische Hydrierung) ein neuer Weg zu bimakrocyclischen, 2,9- bisarylsubstituierten Konkaven 1,10-Phenanthrolinen eröffnet. Dieser Syntheseansatz zeichnete sich durch hohe Ausbeuten der Einzelreaktionen und breite Variabilität aus. Eine leichte Abwandlung der Reaktionsführung führte zur Darstellung 2,9-bisaryloxysubstituierter Konkaver 1,10-Phenanthroline. Eingesetzt als Liganden in Kupfer(I)-katalysierten Cyclopropanierungen von Alkenen mit Diazoacetaten zeigten Vertreter der neu synthetisierten Klassen Konkaver 1,10-Phenanthroline eine bevorzugte Bildung der syn- vor den anti-Cyclopropanen im Vergleich zu den entsprechenden Reaktionen mit nicht komplexierten Kupfer(I)-Ionen

    Electrochemically-Modulated Semiconductor Crystal Growth from Liquid Metal Electrodes.

    Full text link
    This thesis describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III–V semiconductor materials at or near ambient temperature conditions. This strategy, which we call “electrochemical liquid–liquid–solid” (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte–liquid metal–solid crystal phase boundary strongly influences crystal growth. The intent of this thesis is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods in Chapter 1 and then highlighting some unique capabilities of ec-LLS in subsequent chapters. Specifically, Chapter 2 describes the first demonstration of an epitaxial ec-LLS growth process of single-crystalline germanium (Ge) nanowires at room temperature in a massively parallel fashion. Chapter 3 further extends the concept of heterogeneous nucleation in ec-LLS into the micron-sized scale regime by describing highly ordered crystalline Ge microwire arrays. Chapter 4 addresses the hypothesis as to whether the liquid metal electrode in ec-LLS can also serve as a reactant source for preparation of the compound semiconductor, GaAs. Chapter 5 demonstrates a new electrochemically-induced alloy formation process to directly prepare crystalline InAs films in aqueous electrolytes at room temperature. And Chapter 6 summarizes and contextualizes the cumulative conclusions of this thesis while describing future research directions.PhDChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133347/1/ejfahren_1.pd

    Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK

    Get PDF
    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~\ua024\ua0h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6\ua0kinase) into the nucleus. In hippocampal neurons from Per1 mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. (Figure presented.) We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus, sculpturing time-of-day-dependent memory formation. This molecular mechanism constitutes the functional link between circadian rhythms and learning efficiency. In hippocampal neurons of wild-type mice, pP90RSK translocates into the nucleus upon stimulation with forskolin (left), whereas in Period1-knockout (Per1) mice (right) the kinase is trapped at the nuclear periphery, unable to efficiently phosphorylate nuclear CREB. Consequently, the presence of PER1 in hippocampal neurons is a prerequisite for the time-of-day-dependent phosphorylation of CREB, as it regulates the shuttling of pP90RSK into the nucleus. Representative immunofluorescence images show a temporal difference in phosphorylated cAMP response element-binding protein (pCREB; green color) levels in all regions of the dorsal hippocampus between a wild-type C3H mouse (WT; left) and a Period1-knockout (Per1; right) mouse. Images were taken 2\ua0h after lights on, thus, when fluctuating levels of pCREB peak in WT mouse hippocampus. Insets show a representative hippocampal neuron, in response to activating cAMP signaling, stained for the neuronal marker NeuN (red), the nuclear marker DAPI (blue) and the activated CREB kinase pP90RSK (green). The image was taken 2\ua0h after light onset (at the peak of the endogenous CREB phosphorylation that fluctuates with time of day). Magnification: 100X, inset 400X. Read the Editorial Highlight for this article on page 650. Cover image for this issue: doi: 10.1111/jnc.13332

    Altered Expression Pattern of Clock Genes in a Rat Model of Depression

    Get PDF
    BACKGROUND: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation of clock gene expression in depressive patients, many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats is associated with alternations of the diurnal expression of clock genes. The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes: period genes 1 and 2 (Per1 and Per2) and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at a 4h sampling interval within 24h. We quantified expression of clock genes on brain sections in the prefrontal cortex, nucleus accumbens, pineal gland, suprachiasmatic nucleus, substantia nigra, amygdala, ventral tegmental area, subfields of the hippocampus, and the lateral habenula using in situ hybridization histochemistry. Expression of clock genes in the liver was monitored by real-time quantitative polymerase chain reaction (PCR). RESULTS: We found that the effect of CMS on clock gene expression was selective and region specific. Per1 exhibits a robust diurnal rhythm in most regions of interest, whereas Bmal1 and in particular Per2 were susceptible to CMS. CONCLUSION: The present results suggest that altered expression of investigated clock genes is likely associated with the induction of a depression-like state in the CMS model
    corecore