13 research outputs found

    Metal toxicity links to Alzheimer's disease and neuroinflammation

    Get PDF
    As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD

    Inflammation: the link between comorbidities, genetics, and Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body's key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments

    Refinement of αα-Synuclein Ensembles Against SAXS Data: Comparison of Force Fields and Methods

    No full text
    The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to interpret experimental data using structural models. On the other hand, molecular dynamics simulations of IDPs often suffer from force-field inaccuracies, and long simulation times or enhanced sampling methods are needed to obtain converged ensembles. Here, we apply metainference and Bayesian/Maximum Entropy reweighting approaches to integrate prior knowledge of the system with experimental data, while also dealing with various sources of errors and the inherent conformational heterogeneity of IDPs. We have measured new SAXS data on the protein α-synuclein, and integrate this with simulations performed using different force fields. We find that if the force field gives rise to ensembles that are much more compact than what is implied by the SAXS data it is difficult to recover a reasonable ensemble. On the other hand, we show that when the simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data

    Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins

    No full text
    Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization

    Insight into Calcium-Binding Motifs of Intrinsically Disordered Proteins

    No full text
    Motifs within proteins help us categorize their functions. Intrinsically disordered proteins (IDPs) are rich in short linear motifs, conferring them many different roles. IDPs are also frequently highly charged and, therefore, likely to interact with ions. Canonical calcium-binding motifs, such as the EF-hand, often rely on the formation of stabilizing flanking helices, which are a key characteristic of folded proteins, but are absent in IDPs. In this study, we probe the existence of a calcium-binding motif relevant to IDPs. Upon screening several carefully selected IDPs using NMR spectroscopy supplemented with affinity quantification by colorimetric assays, we found calcium-binding motifs in IDPs which could be categorized into at least two groups—an Excalibur-like motif, sequentially similar to the EF-hand loop, and a condensed-charge motif carrying repetitive negative charges. The motifs show an affinity for calcium typically in the ~100 μM range relevant to regulatory functions and, while calcium binding to the condensed-charge motif had little effect on the overall compaction of the IDP chain, calcium binding to Excalibur-like motifs resulted in changes in compaction. Thus, calcium binding to IDPs may serve various structural and functional roles that have previously been underreported

    Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins

    No full text
    Diffusion measurements by pulsed field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle X-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modelling and for force field benchmarking and parameterization

    EphA4 regulates hippocampal neural precursor proliferation in the adult mouse brain by d-Serine modulation of N-methyl-d-aspartate receptor signaling

    No full text
    The hippocampal dentate gyrus (DG) is a major region of the adult rodent brain in which neurogenesis occurs throughout life. The EphA4 receptor, which regulates neurogenesis and boundary formation in the developing brain, is also expressed in the adult DG, but whether it regulates adult hippocampal neurogenesis is not known. Here, we show that, in the adult mouse brain, EphA4 inhibits hippocampal precursor cell proliferation but does not affect precursor differentiation or survival. Genetic deletion or pharmacological inhibition of EphA4 significantly increased hippocampal precursor proliferation in vivo and in vitro, by blocking EphA4 forward signaling. EphA4 was expressed by mature hippocampal DG neurons but not neural precursor cells, and an EphA4 antagonist, EphA4-Fc, did not activate clonal cultures of precursors until they were co-cultured with non-precursor cells, indicating an indirect effect of EphA4 on the regulation of precursor activity. Supplementation with d-serine blocked the increased precursor proliferation induced by EphA4 inhibition, whereas blocking the interaction between d-serine and N-methyl-d-aspartate receptors (NMDARs) promoted precursor activity, even at the clonal level. Collectively, these findings demonstrate that EphA4 indirectly regulates adult hippocampal precursor proliferation and thus plays a role in neurogenesis via d-serine-regulated NMDAR signaling

    Tadpole-like Conformations of Huntingtin Exon 1 Are Characterized by Conformational Heterogeneity that Persists regardless of Polyglutamine Length

    No full text
    Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen-deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity

    Deciphering the Alphabet of Disorder—Glu and Asp Act Differently on Local but Not Global Properties

    No full text
    Compared to folded proteins, the sequences of intrinsically disordered proteins (IDPs) are enriched in polar and charged amino acids. Glutamate is one of the most enriched amino acids in IDPs, while the chemically similar amino acid aspartate is less enriched. So far, the underlying functional differences between glutamates and aspartates in IDPs remain poorly understood. In this study, we examine the differential effects of aspartate and glutamates in IDPs by comparing the function and conformational ensemble of glutamate and aspartate variants of the disordered protein Dss1, using a range of assays, including interaction studies, nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and molecular dynamics simulation. First, we analyze the sequences of the rapidly growing database of experimentally verified IDPs (DisProt) and show that glutamate enrichment is not caused by a taxonomy bias in IDPs. From analyses of local and global structural properties as well as cell growth and protein-protein interactions using a model acidic IDP from yeast and three Glu/Asp variants, we find that while the Glu/Asp variants support similar function and global dimensions, the variants differ in their binding affinities and population of local transient structural elements. We speculate that these local structural differences may play roles in functional diversity, where glutamates can support increased helicity, important for folding and binding, while aspartates support extended structures and form helical caps, as well as playing more relevant roles in, e.g., transactivation domains and ion-binding
    corecore