182 research outputs found

    Double Bragg diffraction: A tool for atom optics

    Full text link
    The use of retro-reflection in light-pulse atom interferometry under microgravity conditions naturally leads to a double-diffraction scheme. The two pairs of counterpropagating beams induce simultaneously transitions with opposite momentum transfer that, when acting on atoms initially at rest, give rise to symmetric interferometer configurations where the total momentum transfer is automatically doubled and where a number of noise sources and systematic effects cancel out. Here we extend earlier implementations for Raman transitions to the case of Bragg diffraction. In contrast with the single-diffraction case, the existence of additional off-resonant transitions between resonantly connected states precludes the use of the adiabatic elimination technique. Nevertheless, we have been able to obtain analytic results even beyond the deep Bragg regime by employing the so-called "method of averaging," which can be applied to more general situations of this kind. Our results have been validated by comparison to numerical solutions of the basic equations describing the double-diffraction process.Comment: 26 pages, 20 figures; minor changes to match the published versio

    A compact dual atom interferometer gyroscope based on laser-cooled rubidium

    Full text link
    We present a compact and transportable inertial sensor for precision sensing of rotations and accelerations. The sensor consists of a dual Mach-Zehnder-type atom interferometer operated with laser-cooled 87^{87}Rb. Raman processes are employed to coherently manipulate the matter waves. We describe and characterize the experimental apparatus. A method for passing from a compact geometry to an extended interferometer with three independent atom-light interaction zones is proposed and investigated. The extended geometry will enhance the sensitivity by more than two orders of magnitude which is necessary to achieve sensitivities better than 10−810^{-8} rad/s/Hz\sqrt{\rm Hz}.Comment: 9 pages, 8 figure

    Versatile compact atomic source for high resolution dual atom interferometry

    Full text link
    We present a compact 87^{87}Rb atomic source for high precision dual atom interferometers. The source is based on a double-stage magneto-optical trap (MOT) design, consisting of a 2-dimensional (2D)-MOT for efficient loading of a 3D-MOT. The accumulated atoms are precisely launched in a horizontal moving molasses. Our setup generates a high atomic flux (>1010>10^{10} atoms/s) with precise and flexibly tunable atomic trajectories as required for high resolution Sagnac atom interferometry. We characterize the performance of the source with respect to the relevant parameters of the launched atoms, i.e. temperature, absolute velocity and pointing, by utilizing time-of-flight techniques and velocity selective Raman transitions.Comment: uses revtex4, 9 pages, 12 figures, submitted to Phys. Rev.

    Penning collisions of laser-cooled metastable helium atoms

    Full text link
    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient β\beta on the excited state (23P22^3P_2) and metastable state (23S12^3S_1) populations is also investigated. From these results we infer a rather uniform rate constant Ksp=(1±0.4)×10−7K_{sp}=(1{\pm}0.4)\times10^{-7} cm3^3/s.Comment: 8 pages, 9 figures, Revte

    New frontiers at the interface of general relativity and quantum optics

    Get PDF
    In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel\u27s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall. © 2009 Springer Science+Business Media B.V

    Differential atom interferometry beyond the standard quantum limit

    Full text link
    We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.Comment: 10 pages, 5 figures; eq. (3) corrected and other minor change

    Bloch-Like Quantum Multiple Reflections of Atoms

    Full text link
    We show that under certain circumstances an atom can follow an oscillatory motion in a periodic laser profile with a Gaussian envelope. These oscillations can be well explained by using a model of energetically forbidden spatial regions. The similarities and differences with Bloch oscillations are discussed. We demonstrate that the effect exists not only for repulsive but also for attractive potentials, i.e. quantum multiple reflections are also possible.Comment: LaTeX, 7 pages, 7 figure
    • …