28 research outputs found

    Improving the performance of natural rubber using graphene and its derivatives

    Get PDF
    In this research project, modified graphene was employed as filler to enhance the electrical conductivity and to reinforce mechanical properties of natural rubber (NR). The defect sites in the graphene sheets were investigated for further modification. The latex mixing and mechanical mixing methods to load functional graphene sheets into the NR matrix, improved the mechanical and electrical properties of the composite material. Graphene was prepared by a chemical oxidation-reduction approach to fill the NR matrix. The oxidation approaches were employed in progress, which will induce various defects in the final product. It is known that these defects decrease the properties of the graphene and graphene/natural rubber composites, which are prepared by traditional method as well. However, these defects could cause improvements in performance of the graphene composites with re-designed methods, the main focus of this thesis. Before loading into NR matrix, the defect information of graphene oxide (GO) prepared using Hummers method was examined through positron testing, which is known to be highly effective in the study of the defects in graphite and its derivatives. The different types of defects were detectable, which revealed that the vacancy clusters and vacancy-oxygen group complexes were present on the GO sheets. No large open-volume hole was detected in GO. The reduction of GO by potassium carbonate (K2CO3) as a green noble preparation approach was developed, and the oxygen groups dispersion status in the GO sheet was further investigated. K2CO3 was used as a reusable reduction agent to convert GO to reduced graphene oxide (RGO) in two steps, based on the conversion of the different types of oxygen groups detected. Carbon dioxide was the only by-product of this process, which was absorbed by K2CO3. In addition, the study further elucidates the structure of GO sheets. The oxygen groups on the GO sheets not only aligned but also randomly dispersed in different areas. Antistatic NR nanocomposites with partly interconnected graphene architectures offer significant enhancement in various properties. RGO/NR composites were prepared using latex mixing and in-situ reduction process. The oxygen groups on the GO played a key role in attaching GO sheets to the surface of NR particles. Segregated current transfer routes were partly constructed in an NR matrix with an electrical conductivity of 0.1 S/m and reinforcing the tensile strength and elongation-at-break as well. Silver nanoparticles (AgNPs) were used to decorate GO, which further increased the electrical conductivity of NR nanocomposites. Electrically conductive AgNPs/RGO filled NR with well-organized three-dimensional (3D) microstructures were prepared through electrostatic self-assembly integrated latex mixing. The oxygen groups in GO acted as an anchor for AgNPs growth, resulting in the electrical conductivity of 31000 S/m for the AgNPs/RGO. A honeycomb-like AgNPs/RGO 3D network was constructed in the NR matrix after freeze-drying and hot compression moulding. The AgNPs/RGO/NR nanocomposites show a percolation threshold of 0.63 vol.% and electrical conductivity of 196 S/m at AgNPs/RGO content of 4.03 vol.%. The oxygen groups can not only be used to improve the electrical conductivity of NR but also used to reinforce mechanical properties. The effect of functionalized GO on the mechanical properties of NR was investigated through two strategies. In the first strategy, one layer of silica particles were attached to the GO surface through hydrogen bonds. The strength were reinforced because of well-dispersed SiO2/GO in the NR matrix. GO acted as a surfactant dispersed by silica into the NR matrix to reinforce the mechanical properties using latex mixing. Oxygen groups on the graphene sheets banded with silica to achieve the target. In the second strategy, the strength reinforcement of NR nanocomposites was achieved by construction of an interpenetrating network between the NR molecules and porous graphene. In this project, porous graphene loaded NR nanocomposites were prepared through an ultrasonically assisted latex mixing and in-situ reduction process. The oxygen groups showed chemo-selectivity etched by potassium permanganate (KMnO4), forming pores possessing suitable dimensions in graphene sheets. Porous graphene/NR nanocomposites show strong interactions between the NR molecules and porous graphene than RGO/NR, which contributed to an increase in tensile strength compared to the RGO/NR nanocomposites. Furthermore, the scorch time compared to RGO/NR was decreased, and density of cross-linking was increased, which demonstrate the pores on the graphene sheets formed a mass transfer route, indicating an interpenetrating network was constructed

    Super-compact universal quantum logic gates with inversedesigned elements

    Full text link
    Integrated quantum photonic circuit is a promising platform for the realization of quantum information processing in the future. To achieve the largescale quantum photonic circuits, the applied quantum logic gates should be as small as possible for the high-density integration on chips. Here, we report the implementation of super-compact universal quantum logic gates on silicon chips by the method of inverse design. In particular, the fabricated controlled-NOT gate and Hadamard gate are both nearly a vacuum wavelength, being the smallest optical quantum gates reported up to now. We further design the quantum circuit by cascading these fundamental gates to perform arbitrary quantum processing, where the corresponding size is about several orders smaller than that of previous quantum photonic circuits. Our study paves the way for the realization of largescale quantum photonic chips with integrated sources, and can possess important applications in the field of quantum information processes

    Disparate Associations of HLA Class I Markers with HIV-1 Acquisition and Control of Viremia in an African Population

    Get PDF
    BACKGROUND:Acquisition of human immunodeficiency virus type 1 (HIV-1) infection is mediated by a combination of characteristics of the infectious and the susceptible member of a transmission pair, including human behavioral and genetic factors, as well as viral fitness and tropism. Here we report on the impact of established and potential new HLA class I determinants of heterosexual HIV-1 acquisition in the HIV-1-exposed seronegative (HESN) partners of serodiscordant Zambian couples. METHODOLOGY/PRINCIPAL FINDINGS:We assessed the relationships of behavioral and clinically documented risk factors, index partner viral load, and host genetic markers to HIV-1 transmission among 568 cohabiting couples followed for at least nine months. We genotyped subjects for three classical HLA class I genes known to influence immune control of HIV-1 infection. From 1995 to December 2006, 240 HESNs seroconverted and 328 remained seronegative. In Cox proportional hazards models, HLA-A*68:02 and the B*42-C*17 haplotype in HESN partners were significantly and independently associated with faster HIV-1 acquisition (relative hazardsβ€Š=β€Š1.57 and 1.55; pβ€Š=β€Š0.007 and 0.013, respectively) after controlling for other previously established contributing factors in the index partner (viral load and specific class I alleles), in the HESN partner (age, gender), or in the couple (behavioral and clinical risk score). Few if any previously implicated class I markers were associated here with the rate of acquiring infection. CONCLUSIONS/SIGNIFICANCE:A few HLA class I markers showed modest effects on acquisition of HIV-1 subtype C infection in HESN partners of discordant Zambian couples. However, the striking disparity between those few markers and the more numerous, different markers found to determine HIV-1 disease course makes it highly unlikely that, whatever the influence of class I variation on the rate of infection, the mechanism mediating that phenomenon is identical to that involved in disease control
    corecore