885 research outputs found

    Investigating the nature of the K0βˆ—(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0βˆ—(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0βˆ—(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0βˆ—(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0βˆ—(700)^*_0(700) resonance

    Reduced Graphene Oxide/Cellulose Sodium Aerogel-Supported Eutectic Phase Change Material Gel Demonstrating Superior Energy Conversion and Storage Capacity toward High-Performance Personal Thermal Management

    No full text
    By virtue of their capacity to absorb and release energy during the phase change process, phase change materials (PCMs) are ideal for personal thermal management (PTM). The combination of reduced graphene oxide/cellulose sodium aerogel (rGCA) and lauric acid/myristic acid binary eutectic phase change gel (LMG) creates a composite phase change material that possesses outstanding photothermal conversion capabilities, electro-thermal conversion capabilities, energy storage capabilities, and shape-stable performance. The results showed that rGCA had a maximum adsorption efficiency of 99.7% with a melting latent heat of 124.6 J g–1. The high absorption rate of rGCA to LMG is a result of the capillary force, pore characteristics, hydrogen bonding, and the π–π interaction. Notably, rGCA and LMG composite material (rGCG) exhibited an excellent photothermal conversion efficiency of 96.5% and electro-thermal conversion of 82.3%. Results indicate that binary eutectic phase change materials are more suitable for temperature regulation than single phase change materials, making them more suitable for PTM. It is anticipated that the innovative thermal comfort solution, which provides thermal shielding, thermal energy storage, self-supporting characteristics, and wearability, will offer new possibilities for the next generation of wearable PTMs

    Nanotexture and crystal phase regulation for synergistic enhancement in re-endothelialization on medical pure titanium surface

    No full text
    Re-endothelialization has been recognized as a promising strategy to address the tissue hyperplasia and subsequent restenosis which are major complications associated with vascular implant/interventional titanium devices. However, the uncontrollable over-proliferation of smooth muscle cells (SMCs) limits the clinical application of numerous modified strategies. Herein, a novel modified strategy involving with a two-step anodic oxidation and annealing treatment was proposed to achieve rapid re-endothelialization function regulated by regular honeycomb nanotexture and specific anatase phase on the titanium surface. Theoretical calculation revealed that the presence of nanotexture reduced the polar component of surface energy, while the generation of anatase significantly enhanced the polar component and total surface energy. Meanwhile, the modified surface with regular nanotexture and anatase phase produced positive effect on the expression of CD31, VE-Cadherin and down-regulated Ξ±-SMA proteins expression, indicating excellent capacity of pro-endothelial regeneration and inhibition of SMCs proliferation and migration. One-month in vivo implantation in rabbit carotid arteries further confirmed that modified tube implant surface effectively accelerated confluent endothelial monolayer formation and promoted native-like endothelium tissue regeneration. By contrast, original titanium tube implant induced a disorganized tissue proliferation in the lumen with a high risk of restenosis. Collectively, this study opens us an alternative route to achieve the function that selectively promotes endothelial cells (ECs) growth and suppresses SMCs on the medical titanium surface, which has a great potential in facilitating re-endothelialization on the surface of blood-contacting titanium implant

    Investigating the nature of the K0βˆ—(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0βˆ—(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0βˆ—(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0βˆ—(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0βˆ—(700)^*_0(700) resonance

    Investigating the nature of the K0βˆ—(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0βˆ—(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0βˆ—(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0βˆ—(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0βˆ—(700)^*_0(700) resonance

    Investigating the nature of the K0βˆ—(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC