249 research outputs found

    Damped Lyα systems as probes of chemical evolution over cosmological timescales

    Get PDF
    We review the current state of knowledge of damped Lyα systems (DLAs) selected in absorption on quasar sightlines. These objects are extremely useful to study the interstellar medium of high-redshift galaxies and the nucleosynthesis in the early Universe. The characteristics of this galaxy population has been investigated for years and slowly we are getting information on their puzzling nature. Imaging at z <1 shows that DLAs are associated with a mixing bag of galaxies with no especially large contribution from dwarf galaxies. Evidence for a mild evolution of the cosmic mean metallicity with time is observed. The star formation histories of these high-redshift galaxies begin to be accessible and indicate that DLAs tend to be young, gas-dominated galaxies with low star formation rates per unit area. Finally, indirect estimation of the DLA stellar masses from the mass-metallicity relations observed for emission-selected star-forming galaxies at z = 2−3 points to intermediate-mass galaxies with M* < 109

    CO map and steep Kennicutt-Schmidt relation in the extended UV disk of M63

    Full text link
    Results from the UV satellite GALEX revealed large extensions of disks in some nearby spiral galaxies, extending out to 3 to 4 times the isophotal radius, r25. M63 is a remarkable example of a spiral galaxy with one of the most extended UV disks, so it offers the opportunity to search for the molecular gas and characterize the star formation in outer disk regions as revealed by the UV emission. We obtained deep CO(1-0) and CO(2-1) observations on the IRAM 30 m telescope along the major axis of the M63 disk from the center out to the galactocentric radius rgal = 1.6 r25 and over a bright UV region at rgal = 1.36 r25. CO(1-0) is detected all along the M63 major axis out to r25, and CO(2-1) is confined to rgal = 0.68 r25, which may betray lower excitation temperatures in the outer disk. CO(1-0) is also detected in the external bright UV region of M63. The radial profiles of the CO emission and of the Halpha, 24 micron, NUV and FUV star formation tracers and HI taken from the literature show a severe drop with the galactocentric radius, such that beyond r25 they are all absent with the exception of a faint UV emission and HI. The CO emission detection in the external UV region, where the UV flux is higher than the UV flux observed beyond r25, highlights a tight correlation between the CO and UV fluxes, namely the amount of molecular gas and the intensity of star formation. This external UV region is dominated by the atomic gas, suggesting that HI is more likely the precursor of H2 rather than the product of UV photodissociation. A broken power law needs to be invoked to describe the Kennicutt-Schmidt (K-S) relation of M63 from the center of the galaxy out to rgal = 1.36 r25. While all along the major axis out to r25 the K-S relation is almost linear, in the external UV region the SFR regime is highly nonlinear and characterized by a steep K-S relation and very low star formation efficiency.Comment: 12 pages, 8 figures, A&A accepte

    Resolving The ISM Surrounding GRBs with Afterglow Spectroscopy

    Full text link
    We review current research related to spectroscopy of gamma-ray burst (GRB) afterglows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star-forming galaxies and yield clues to the nature of the GRB progenitor. We offer a pedagogical review of the experimental design and review current results. The majority of sightlines are characterized by large HI column densities, negligible molecular fraction, the ubiquitous detection of UV pumped fine-structure transitions, and metallicities ranging from 1/100 to nearly solar abundance.Comment: Conference procedings for Gamma Ray Bursts 2007 November 5-9, 2007 Santa Fe, New Mexico (8 pages, 4 figures

    Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3

    Full text link
    Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxy's halo, delivering not just fuel for star-formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. Here we report observations showing these distinct signatures near a typical distant star-forming galaxy where the gas is detected using a background quasar passing 26 kpc from the host. Our observations indicate that gas accretion plays a major role in galaxy growth since the estimated accretion rate is comparable to the star-formation rate.Comment: 33 pages, 8 figures, version matching the proofed tex

    A homogeneous sample of sub-damped Lyman α systems — II. Statistical, kinematic and chemical properties

    Get PDF
    Damped Lyman α systems (DLAs), with N(H i) > 2 × 1020 atom cm−2, observed in the spectra of quasars have allowed us to quantify the chemical content of the Universe over cosmological scales. Such studies can be extended to lower column densities, in the sub-DLA range [1019 3.5. In this paper, we use a homogeneous sample of sub-DLAs from the European Southern Oberservatory (ESO) Ultraviolet-Visual Echelle Spectrograph (UVES) archives presented in Paper I, to determine observationally for the first time the shape of the column density distribution, ƒ(N), down to N(H i) = 1019 atom cm−2. The results are in good agreement with the predictions from Péroux et al. We also present the kinematic and clustering properties of this survey of sub-DLAs, which appear to be marginally different from the DLAs. We compare low- and high-ionization transition widths and find that the properties of the sub-DLAs span roughly the parameter space of DLAs. We also find hints of an increase of metallicity in systems with larger velocity widths in the metal lines, although the statistical significance of this result is low. Then we analyse the chemical content of this sample in conjunction with a compilation of abundances from 72 DLAs taken from the literature. As previously reported, the individual metallicities traced by [Fe/H] of these systems evolve mildly with redshift. Moreover, we analyse the H i column-density-weighted mean abundance, which is believed to be an indicator of the metallicity of the Universe. Although the number statistics is limited in the current sample, the results suggest a slightly stronger evolution of this quantity in the sub-DLA range. The effect is predominant at z < 2 and most of the evolution observed lies in this redshift range. Observational arguments support the hypothesis that the evolution we probe in the sub-DLA range is not due to their lower dust content. Therefore, these systems might be associated with a different class of objects, which better trace the overall chemical evolution of the Universe. Finally, we present abundance ratios of [Si/Fe], [O/Fe], [C/Fe] and [Al/Fe] for sub-DLAs in conjunction with DLA measurements from the literature. The elemental ratios in sub-DLAs are comparable with those from DLAs. It is difficult to decipher whether the observed values are the effect of nucleosynthesis or are due to differential dust depletion. The metallicities are compared with two different sets of models of galaxy evolution in order to provide constraints on the morphology of quasar absorber

    A homogeneous sample of sub-damped Lyman α systems — III. Total gas mass ΩH i+He ii at z > 2

    Get PDF
    Absorbers seen in the spectrum of background quasars are a unique tool with which to select H i-rich galaxies at all redshifts. In turns, these galaxies allow us to determine the cosmological evolution of the H i gas ΩHi+Heii, which is a possible indicator of gas consumption as star formation proceeds. The damped Lyman α (Lya) systems (DLAs with NH i = 1020.3 cm−2), in particular, are believed to contain a large fraction of the H i gas but there are also indications that lower column-density systems, called ‘sub-damped Lyα' systems, play a role at high redshift. Here we present the discovery of high-redshift sub-DLAs based on 17 z > 4 quasar spectra observed with the Ultraviolet—Visual Echelle Spectrograph (UVES) on the Very Large Telescope (VLT). This sample is composed of 21 new sub-DLAs which, together with another 10 systems from previous European Southern Observatory archive studies, make up a homogeneous sample. The redshift evolution of the number density of several classes of absorbers is derived and shows that all systems seem to be evolving in the redshift range from z = 5 to z∼ 3. These results are further used to estimate the redshift evolution of the characteristic radius of these classes of absorbers, assuming a Holmberg relation and one unique underlying parent population. DLAs are found to have R* ∼ 20 h−1100 kpc, while sub-DLAs have R*∼ 40 h−1100 kpc. The redshift evolution of the column density distribution, f(N,z), down to NH i = 1019 cm−2 is also presented. A departure from a power law due to a flattening of f(N,z) in the sub-DLA regime is present in the data. f(N,z) is further used to determine the H i gas mass contained in sub-DLAs at z > 2. The complete sample shows that sub-DLAs are important at all redshifts from z = 5 to z = 2. Finally, the possibility that sub-DLAs are less affected by the effects of dust obscuration than classical DLAs is discusse
    • …
    corecore