34 research outputs found

    Relativistic effect on atomic displacement damage for two-body inducing discrete reactions

    Get PDF
    The relativistic effect on two-body discrete reaction inducing atomic recoil energy and the sequent damage energy is studied for 6Li, 56Fe, 184W, and 238U. The relativistic correction is within 1% if incident neutron energy is below 20 MeV. For incident neutron energy up to 200 MeV or even 800 MeV, the relativistic effect should be taken into account for treating two-body kinematics. The relativistic correction is about 0.05Ein/MeV% for neutron elastic scattering for nuclei from 56Fe to 238U and smaller for (n,α) and (n,t) reactions. Analyses on damage energy show that the relativistic corrections are generally within 2% for incident neutron below 200 MeV for nuclei lighter than 56Fe because of the “saturation” of damage energy. However, the current damage theory cannot be applied for Primary Knock-on Atom (PKA) energy higher than 24.9ARZR4/3 keV, which is 10 times lower than the maximum PKA energy for D+T fusion neutron elastic scattering of 6Li

    Relativistic effect on atomic displacement damage for two-body inducing discrete reactions

    No full text
    The relativistic effect on two-body discrete reaction inducing atomic recoil energy and the sequent damage energy is studied for 6Li, 56Fe, 184W, and 238U. The relativistic correction is within 1% if incident neutron energy is below 20 MeV. For incident neutron energy up to 200 MeV or even 800 MeV, the relativistic effect should be taken into account for treating two-body kinematics. The relativistic correction is about 0.05Ein/MeV% for neutron elastic scattering for nuclei from 56Fe to 238U and smaller for (n,α) and (n,t) reactions. Analyses on damage energy show that the relativistic corrections are generally within 2% for incident neutron below 200 MeV for nuclei lighter than 56Fe because of the “saturation” of damage energy. However, the current damage theory cannot be applied for Primary Knock-on Atom (PKA) energy higher than 24.9ARZR4/3 keV, which is 10 times lower than the maximum PKA energy for D+T fusion neutron elastic scattering of 6Li

    Nuclear data assimilation, scientific basis and current status

    No full text
    International audienceThe use of Data Assimilation methodologies, known also as a data adjustment, liaises the results of theoretical and experimental studies improving an accuracy of simulation models and giving a confidence to designers and regulation bodies. From the mathematical point of view, it approaches an optimized fit to experimental data revealing unknown causes by known consequences that would be crucial for data calibration and validation. Data assimilation adds value in a ND evaluation process, adjusting nuclear data to particular application providing so-called optimized design-oriented library, calibrating nuclear data involving IEs since all theories and differential experiments provide the only relative values, and providing an evidence-based background for validation of Nuclear data libraries substantiating the UQ process. Similarly, it valorizes experimental data and the experiments, as such involving them in a scientific turnover extracting essential information inherently contained in legacy and newly set up experiments, and prioritizing dedicated basic experimental programs. Given that a number of popular algorithms, including deterministic like Generalized Linear Least Square methodology and stochastic ones like Backward and Hierarchic or Total Monte-Carlo, Hierarchic Monte-Carlo, etc., being different in terms of particular numerical formalism are, though, commonly grounded on the Bayesian theoretical basis. They demonstrated sufficient maturity, providing optimized design-oriented data libraries or evidence-based backgrounds for a science-driven validation of general-purpose libraries in a wide range of practical applications
    corecore