4,617 research outputs found

    Correlates of breakthrough COVID-19 in vaccinated patients with systemic sclerosis: survival analysis from a multicentre international patient-reported survey

    No full text
    This study aimed to assess the incidence, predictors, and outcomes of breakthrough infection (BI) following coronavirus disease (COVID-19) vaccination in patients with systemic sclerosis (SSc), a risk group associated with an immune-suppressed state and high cardiopulmonary disease burden. Cross-sectional data from fully vaccinated respondents with SSc, non-SSc autoimmune rheumatic diseases (AIRDs), and healthy controls (HCs) were extracted from the COVAD database, an international self-reported online survey. BI was defined according to the Centre for Disease Control definition. Infection-free survival was compared between the groups using Kaplan‚ÄďMeier curves with log-rank tests. Cox proportional regression was used to assess the association between BI and age, sex, ethnicity, and immunosuppressive drugs at the time of vaccination. The severity of BI in terms of hospitalization and requirement for oxygen supplementation was compared between groups. Of 10,900 respondents, 6836 fulfilled the following inclusion criteria: 427 SSc, 2934 other AIRDs, and 3475 HCs. BI were reported in 6.3% of SSc, 6.9% of non-SSc AIRD, and 16.1% of HCs during a median follow-up of 100 (IQR: 60‚Äď137) days. SSc had a lower risk for BI than HC [hazard ratio (HR): 0.56 (95% CI 0.46‚Äď0.74)]. BIs were associated with age [HR: 0.98 (0.97‚Äď0.98)] but not ethnicity or immunosuppressive drugs at the time of vaccination. Patients with SSc were more likely to have asymptomatic COVID-19, but symptomatic patients reported more breathlessness. Hospitalization [SSc: 4 (14.8%), HCs: 37 (6.6%), non-SSc AIRDs: 32(15.8%)] and the need for oxygenation [SSc: 1 (25%); HC: 17 (45.9%); non-SSc AIRD: 13 (40.6%)] were similar between the groups. The incidence of BI in SSc was lower than that in HCs but comparable to that in non-SSc AIRDs. The severity of BI did not differ between the groups. Advancing age, but not ethnicity or immunosuppressive medication use, was associated with BIs

    Production of ő∑ and ő∑‚Ä≤ mesons in pp and pPb collisions

    Get PDF
    The production of ő∑ and ő∑ ‚Ä≤ mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.02 and 13 TeV and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV . The studies are performed in center-of-mass (c.m.) rapidity regions 2.5 < y c . m . < 3.5 (forward rapidity) and ‚ąí 4.0 < y c . m . < ‚ąí 3.0 (backward rapidity) defined relative to the proton beam direction. The ő∑ and ő∑ ‚Ä≤ production cross sections are measured differentially as a function of transverse momentum for 1.5 < p T < 10 GeV and 3 < p T < 10 GeV , respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for ő∑ and ő∑ ‚Ä≤ mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of ő∑ mesons are also used to calculate ő∑ / ŌÄ 0 cross-section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as ő∑ and ő∑ ‚Ä≤ meson fragmentation

    Radioisotopes production using lasers: from basic science to applications

    No full text
    International audienceLaser technologies improved after the understanding of the Chirped Pulse Amplification (CPA) which allows energetic laser beams to be compressed to tens of femtosecond (fs) pulse durations and focused to few őľ\mum. Protons of tens of MeV can be accelerated using for instance the Target Normal Sheath Acceleration (TNSA) method and focused on secondary targets. In such conditions, nuclear reactions can occur and radioisotopes relevant for medical purposes be produced. High repetition lasers can be used to produce enough isotopes for medical applications. This route is competitive to conventional methods mostly based on accelerators. In this paper we study the production of 67^{67}Cu, 63^{63}Zn, 18^{18}F and 11^{11}C currently used in positron emission tomography (PET) and other applications. At the same time, we study the reaction 10^{10}B(p,őĪ\alpha)7^{7}Be and 70^{70}Zn(p,4n)67^{67}Ga to put further constraints to the proton distributions at different angles and to the reaction 11^{11}B(p,őĪ\alpha)8^{8}Be relevant for energy production. The experiment was performed at the 1 petawatt (PW) laser facility at Vega III located in Salamanca-Spain. Angular distributions of radioisotopes in the forward (with respect to the laser direction) and backward directions were measured using a High Purity Germanium Detector (HPGE). Our results are reasonably reproduced by the numerical estimates following the approach of Kimura et al. (NIMA637(2011)167

    Flares in IIMs and the timeline following COVID-19 vaccination: a combined analysis of the COVAD-1 and -2 surveys

    No full text
    Objectives: Disease flares in the post-coronavirus disease 2019 (COVID-19) vaccination period represent a prominent concern, though risk factors are poorly understood. We studied these flares among patients with idiopathic inflammatory myopathies (IIMs) and other autoimmune rheumatic diseases (AIRDs). Methods: The COVAD-1 and -2 global surveys were circulated in early 2021 and 2022, respectively, and we captured demographics, comorbidities, AIRDs details, COVID-19 infection history and vaccination details. Flares of IIMs were defined as (a) patient self-reported, (b) immunosuppression (IS) denoted, (c) clinical sign directed and (d) with >7.9-point minimal clinically significant improvement difference worsening of Patient-Reported Outcomes Measurement Information System (PROMIS) PROMISPF10a score. Risk factors of flares were analysed using regression models. Results: Of 15 165 total respondents, 1278 IIMs (age 63 years, 70.3% female, 80.8% Caucasians) and 3453 AIRDs were included. Flares of IIM were seen in 9.6%, 12.7%, 8.7% and 19.6% patients by definitions (a) to (d), respectively, with a median time to flare of 71.5 (10.7-235) days, similar to AIRDs. Patients with active IIMs pre-vaccination (OR 1.2; 95% CI 1.03, 1.6, P = 0.025) were prone to flares, while those receiving rituximab (OR 0.3; 95% CI 0.1, 0.7, P = 0.010) and AZA (OR 0.3, 95% CI 0.1, 0.8, P = 0.016) were at lower risk. Female gender and comorbidities predisposed to flares requiring changes in IS. Asthma (OR 1.62; 95% CI 1.05, 2.50, P = 0.028) and higher pain visual analogue score (OR 1.19; 95% CI 1.11, 1.27, P < 0.001) were associated with disparity between self-reported and IS-denoted flares. Conclusion: A diagnosis of IIMs confers an equal risk of flares in the post-COVID-19 vaccination period to AIRDs, with active disease, female gender and comorbidities conferring a higher risk. Disparity between patient- and physician-reported outcomes represents a future avenue for exploration

    Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and ő≥-Ray Activity

    No full text
    We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) ő≥ -rays. A significant correlation (>3 ŌÉ ) between X-rays and VHE ő≥ -rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy ő≥ -rays and radio, with the radio lagging by more than 100 days, placing the ő≥ -ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE ő≥ -rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock

    Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array

    Full text link
    CTA (Cherenkov Telescope Array) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. The Large-Sized Telescope prototype (\LST{}) is located at the Northern site of CTA, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to ‚ČÉ20\simeq 20 GeV. \LST{} started performing astronomical observations in November 2019, during its commissioning phase, and it has been taking data since then. We present the first \LST{} observations of the Crab Nebula, the standard candle of very-high energy gamma-ray astronomy, and use them, together with simulations, to assess the basic performance parameters of the telescope. The data sample consists of around 36 hours of observations at low zenith angles collected between November 2020 and March 2022. \LST{} has reached the expected performance during its commissioning period - only a minor adjustment of the preexisting simulations was needed to match the telescope behavior. The energy threshold at trigger level is estimated to be around 20 GeV, rising to ‚ČÉ30\simeq 30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.12 to 0.40 degrees, and energy resolution from 15 to 50\%. Flux sensitivity is around 1.1\% of the Crab Nebula flux above 250 GeV for a 50-h observation (12\% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula.Comment: Submitted to Ap

    Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array

    No full text
    International audienceCTA (Cherenkov Telescope Array) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. The Large-Sized Telescope prototype (\LST) is located at the Northern site of CTA, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to ‚ČÉ20\simeq 20 GeV. \LST started performing astronomical observations in November 2019, during its commissioning phase, and it has been taking data since then. We present the first \LST observations of the Crab Nebula, the standard candle of very-high energy gamma-ray astronomy, and use them, together with simulations, to assess the basic performance parameters of the telescope. The data sample consists of around 36 hours of observations at low zenith angles collected between November 2020 and March 2022. \LST has reached the expected performance during its commissioning period - only a minor adjustment of the preexisting simulations was needed to match the telescope behavior. The energy threshold at trigger level is estimated to be around 20 GeV, rising to ‚ČÉ30\simeq 30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.12 to 0.40 degrees, and energy resolution from 15 to 50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50-h observation (12% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes