39 research outputs found

    Development and assessment of scoring functions for protein identification using PMF data

    Get PDF
    PMF is one of the major methods for protein identification using the MS technology. It is faster and cheaper than MS/MS. Although PMF does not differentiate trypsin-digested peptides of identical mass, which makes it less informative than MS/MS, current computational methods for PMF have the potential to improve its detection accuracy by better use of the information content in PMF spectra. We developed a number of new probability-based scoring functions for PMF protein identification based on the MOWSE algorithm. We considered a detailed distribution of matching masses in a protein database and peak intensity, as well as the likelihood of peptide matches to be close to each other in a protein sequence. Our computational methods are assessed and compared with other methods using PMF data of 52 gel spots of known protein standards. The comparison shows that our new scoring schemes have higher or comparable accuracies for protein identification in comparison to the existing methods. Our software is freely available upon request. The scoring functions can be easily incorporated into other proteomics software packages

    Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    Get PDF
    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Uniformity of the Microsymbiont Population from Soybean Nodules with Respect to Buoyant Density

    No full text

    Analysis of Poly-β-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection

    No full text
    Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis

    Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate

    No full text
    Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. Bradyrhizobium diazoefficiens bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K0.5 values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism

    Carbon Metabolism Enzymes of Rhizobium meliloti Cultures and Bacteroids and Their Distribution within Alfalfa Nodules

    No full text
    Several carbon metabolism enzymes were measured in cultured cells and bacteroids of Rhizobium meliloti 102F51 and in alfalfa root nodule cytosol. The enzyme activity levels of the pentose phosphate pathway were much higher than those of the Embden-Meyerhof-Parnas or Entner-Doudoroff pathways in extracts of cultured cells. The pattern of enzyme activities in the bacteroids was different from that of cultured cells
    corecore