131 research outputs found

    L_1 Shortest Path Queries among Polygonal Obstacles in the Plane

    Get PDF
    Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, after the free space is triangulated, we present an O(n+h log h) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query point t, the length of the L_1 shortest obstacle-avoiding path from s to t can be reported in O(log n) time and the actual path can be found in additional time proportional to the number of edges of the path. Previously, the best algorithm computes such a shortest path map in O(n log n) time and O(n) space. In addition, our techniques also yield an improved algorithm for computing the L_1 geodesic Voronoi diagram of m point sites among the obstacles
    corecore