14 research outputs found

    Septin-microtubule association requires a MAP-like motif unique to Sept9 isoform 1 embedded into septin octamers

    No full text
    International audienceSeptins, a family of GTP-binding proteins assembling into higher order structures, interface with the membrane, actin filaments and microtubules, which positions them as important regulators of cytoarchitecture. Septin 9 (Sept9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short MAP-like motif unique to Sept9 isoform 1 (Sept9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring Sept9_i1. Although outside of the MAP-like motif, HNA mutations abrogates this association, identifying a putative regulatory domain. Removal of this domain from Sept9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin associated pathologies

    iASPP contributes to cell cortex rigidity, mitotic cell rounding, and spindle positioning.

    No full text
    International audienceiASPP is a protein mostly known as an inhibitor of p53 pro-apoptotic activity and a predicted regulatory subunit of the PP1 phosphatase, which is often overexpressed in tumors. We report that iASPP associates with the microtubule plus-end binding protein EB1, a central regulator of microtubule dynamics, via an SxIP motif. iASPP silencing or mutation of the SxIP motif led to defective microtubule capture at the cortex of mitotic cells, leading to abnormal positioning of the mitotic spindle. These effects were recapitulated by the knockdown of the membrane-to-cortex linker Myosin-Ic (Myo1c), which we identified as a novel partner of iASPP. Moreover, iASPP or Myo1c knockdown cells failed to round up upon mitosis because of defective cortical stiffness. We propose that by increasing cortical rigidity, iASPP helps cancer cells maintain a spherical geometry suitable for proper mitotic spindle positioning and chromosome partitioning

    The role of APC-mediated actin assembly in microtubule capture and focal adhesion turnover

    Get PDF
    International audienceFocal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are captured at FAs, where they induce rapid FA disassembly. However, actin’s roles are less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to investigate the role of actin assembly in FA turnover. We show that APC-mediated actin assembly is critical for maintaining normal F-actin levels, organization, and dynamics at FAs, along with organization of FA components. In wild type cells, microtubules are captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the next microtubule capture event leads to delivery of an autophagosome, triggering FA disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, and there are long delays between autophagosome delivery and FA disassembly. Thus, APC-mediated actin assembly is required for normal feedback between microtubules and FAs, and maintaining FAs in a state ‘primed’ for microtubule-induced turnover

    OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome

    No full text
    International audienceOral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies

    All-trans retinoic acid skews monocyte differentiation into interleukin-12-secreting dendritic-like cells

    No full text
    All-trans retinoic acid (ATRA) and retinoid derivatives are essential agents for multiple biological processes. Numerous immune system dysfunctions can occur in the case of retinoid deficiency. Because of the central role of dendritic cells (DCs) in controlling immunity and the wide effects of retinoids on the immune system homeostasis, we investigated the ability of ATRA to influence the differentiation of DCs from circulating peripheral blood monocytes. Human peripheral blood monocytes were cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF) and various concentrations of ATRA. Differentiated cells were assayed for their morphology, phenotype, antigen uptake, allostimulatory capacity and cytokine secretion profile. ATRA (10(-12) mol/l) and GM-CSF drove the differentiation of monocytes into dendritic-like cells (ATRA-DC). ATRA-DCs exhibited DC morphology, had a phenotype of immature DCs, with the expression of CD1a, and upregulation of adhesion and co-stimulatory molecules. ATRA-DCs could induce a proliferative response in naive CD4+ T cells. Although ATRA-DCs retained their antigen-capture capacity, they secreted interleukin (IL)-12p70 without the need for any maturation agent. In addition, ATRA-DCs could drive T cells towards an IL-12-dependent T-helper cell type 1 response with secretion of interferon-gamma. DCs appear to be potential targets for ATRA, giving new insights into the immunomodulatory function of retinoids, with implications potentially related to immunotherapy

    TACC1-chTOG-Aurora A protein complex in breast cancer.

    No full text
    International audienceThe three human TACC (transforming acidic coiled-coil) genes encode a family of proteins with poorly defined functions that are suspected to play a role in oncogenesis. A Xenopus TACC homolog called Maskin is involved in translational control, while Drosophila D-TACC interacts with the microtubule-associated protein MSPS (Mini SPindleS) to ensure proper dynamics of spindle pole microtubules during cell division. We have delineated here the interactions of TACC1 with four proteins, namely the microtubule-associated chTOG (colonic and hepatic tumor-overexpressed gene) protein (ortholog of Drosophila MSPS), the adaptor protein TRAP (tudor repeat associator with PCTAIRE2), the mitotic serine/threonine kinase Aurora A and the mRNA regulator LSM7 (Like-Sm protein 7). To measure the relevance of the TACC1-associated complex in human cancer we have examined the expression of the three TACC, chTOG and Aurora A in breast cancer using immunohistochemistry on tissue microarrays. We show that expressions of TACC1, TACC2, TACC3 and Aurora A are significantly correlated and downregulated in a subset of breast tumors. Using siRNAs, we further show that depletion of chTOG and, to a lesser extent of TACC1, perturbates cell division. We propose that TACC proteins, which we also named 'Taxins', control mRNA translation and cell division in conjunction with microtubule organization and in association with chTOG and Aurora A, and that these complexes and cell processes may be affected during mammary gland oncogenesis

    Characterization of FIM-FGFR1, the fusion product of the myeloproliferative disorder-associated t(8;13) translocation

    No full text
    The t(8;13) translocation found in a rare type of stem cell myeloproliferative disorder generates a constitutively activated tyrosine kinase containing N-terminal sequence encoded by the FIM gene linked to the FGFR1 kinase domain. Here we have further characterized FIM and FIM-FGFR1 proteins. Firstly, we have studied their respective subcellular localization. We show that FIM has nuclear and nucleolar localization, whereas FIM-FGFR1 is mainly cytoplasmic. Within the nucleolus, FIM colocalizes with the upstream binding factor in interphasic cells, indicating that FIM may be involved in the regulation of rRNA transcription. We demonstrate that the targetting of FIM to the nucleus depends upon its C-terminal region, which is absent in the cytoplasmic FIM-FGFR1 protein. Secondly, we demonstrate that FIM-FGFR1 has constitutive dimerization capability mediated by the FIM N-terminal sequences. Finally, we show that FIM-FGFR1 promotes survival of pro-B Ba/F3 cells after interleukin-3 withdrawal, whereas ligand-activated FGFR1 induced not only cell survival but also interleukin-3 independence. Taken together, these results indicate that FIM-FGFR1 is activated by dimerization as a cytoplasmic kinase and suggest that FIM-FGFR1 partially signals through the FGFR1 pathways
    corecore