117 research outputs found

    Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea

    Get PDF
    The phytochemical investigation of the methanol extract of the seeds of Magydaris pastinacea afforded two undescribed benzofuran glycosides, furomagydarins A-B (1, 2), together with three known coumarins. The structures of the new isolates were elucidated after extensive 1D and 2D NMR experiments as well as HR MS. Compound 1 was able to inhibit the COX-2 expression in RAW264.7 macrophages exposed to lipopolysaccharide, a pro-inflammatory stimulus. RT-qPCR and luciferase reporter assays suggested that compound 1 reduces COX-2 expression at the transcriptional level. Further studies highlighted the capability of compound 1 to suppress the LPS-induced p38MAPK, JNK, and C/EBP beta phosphorylation, leading to COX-2 down-regulation in RAW264.7 macrophages

    5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action

    Get PDF
    In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development

    Ebola virus disease: In vivo protection provided by the PAMP restricted TLR3 agonist rintatolimod and its mechanism of action

    Get PDF
    Ebola virus (EBOV) is a highly infectious and lethal pathogen responsible for sporadic self-limiting clusters of Ebola virus disease (EVD) in Central Africa capable of reaching epidemic status. 100% protection from lethal EBOV-Zaire in Balb/c mice was achieved by rintatolimod (Ampligen) at the well tolerated human clinical dose of 6 mg/kg. The data indicate that the mechanism of action is rintatolimod's dual ability to act as both a competitive decoy for the IID domain of VP35 blocking viral dsRNA sequestration and as a pathogen-associated molecular pattern (PAMP) restricted agonist for direct TLR3 activation but lacking RIG-1-like cytosolic helicase agonist properties. These data show promise for rintatolimod as a prophylactic therapy against human Ebola outbreaks

    2H-chromene and 7H-furo-chromene derivatives selectively inhibit tumour associated human carbonic anhydrase IX and XII isoforms

    No full text
    AbstractTumour associated carbonic anhydrases (CAs) IX and XII have been recognised as potential targets for the treatment of hypoxic tumours. Therefore, considering the high pharmacological potential of the chromene scaffold as selective ligand of the IX and XII isoforms, two libraries of compounds, namely 2H-chromene and 7H-furo-chromene derivatives, with diverse substitution patterns were designed and synthesised. The structure of the newly synthesised compounds was characterised and their inhibitory potency and selectivity towards human CA off target isoforms I, II and cancer-associated CA isoforms IX and XII were evaluated. Most of the compounds inhibit CA isoforms IX and XII with no activity against the I and II isozymes. Thus, while the potency was influenced by the substitution pattern along the chromene scaffold, the selectivity was conserved along the series, confirming the high potential of both 2H-chromene and 7H-furo-chromene scaffolds for the design of isozyme selective inhibitors

    Cynarin blocks Ebola virus replication by counteracting VP35 inhibition of interferon-beta production

    No full text
    : Ebola virus (EBOV) is one of the deadliest infective agents whose lethality is linked to the ability to efficiently bypass the host's innate antiviral response. EBOV multifunctional protein VP35 plays a major role in viral replication both as polymerase cofactor and interferon (IFN) antagonist. By hiding the non-self 5'-ppp dsRNA from the cellular receptor RIG-I, VP35 prevents its activation and inhibits IFN-β production. Blocking VP35-dsRNA interaction and IFN-β suppression is a validated drug target. We screened a library of natural extracts and found that cynarin inhibits dsRNA-VP35 binding with an IC50 value of 8.5 μM. It reverts the EBOV VP35 inhibition of IFN-β production, while it does not induce IFN production by itself. Docking experiments suggest that the molecule can bind on the end-capping pocket of VP35 C-terminal Interferon Inhibitory domain (IID), and differential scanning fluorimetry confirmed that cynarin interacts with VP35-IID with a KD of 12 μM. Cynarin was further tested in an EBOV minigenome assay but did not inhibit VP35 polymerase cofactor activity. When evaluated during challenge of IFN-susceptible A549 cells with EBOV isolate derived from the 2014 West African outbreak, cynarin was able to inhibit viral replication with an EC50 value of 9.1 μM, showing no significant cytotoxicity. Our findings show that cynarin blocks EBOV replication by acting directly on VP35 and subverting its IFN antagonism function but not cofactor function, and as such identify the first EBOV inhibitor with this mode of action

    Flavonoids and Acid-Hydrolysis derivatives of Neo-Clerodane diterpenes from Teucrium flavum subsp. glaucum as inhibitors of the HIV-1 reverse transcriptase–associated RNase H function

    Get PDF
    Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase–associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 μM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors

    Exploring new scaffolds for the dual inhibition of HIV-1 RT polymerase and ribonuclease associated functions

    Get PDF
    Current therapeutic protocols for the treatment of HIV infection consist of the combination of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds were active towards the two functions, although at different concentrations. The substitution pattern on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3- [(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl} benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP (IC50 = 8.0 mM) HIV RT-associated function

    Quercetin blocks Ebola Virus infection by counteracting the VP24 Interferon inhibitory function

    No full text
    Ebola Virus (EBOV) is among the most devastating pathogens causing fatal hemorrhagic fever in humans. The 2013–2016 epidemics resulted in over 11000 deaths, while another outbreak is currently ongoing. Since there is no FDA-approved drug so far to fight EBOV infection, there is an urgent need to focus on drug discovery. Considering the tight correlation between the high EBOV virulence and its ability to suppress the type-I Interferon (IFN-I) system, identifying molecules targeting viral protein VP24, one of the main virulence determinants blocking IFN response, is a promising novel anti-EBOV therapy approach. Hence, in the effort of finding novel EBOV inhibitors, a screening of a small set of flavonoids was performed, showing that Quercetin and Wogonin can suppress the VP24 effect on IFN-I signaling inhibition. The mechanism of action of the most active compound, Quercetin, showing an IC50 value of 7.4 μM, was characterized to significantly restore the IFN-I signaling cascade, blocked by VP24, by directly interfering with the VP24 binding to karyopherin-α and thus restoring P-STAT1 nuclear transport and IFN genes transcription. Quercetin significantly blocked viral infection, specifically targeting EBOV VP24 anti-IFN-I function. Overall, Quercetin is the first identified inhibitor of the EBOV VP24 anti-IFN function, representing a molecule interacting with a viral binding site that is very promising for further drug development aiming to block EBOV infection at the early steps

    Targeting HIV-1 RNase H: N'-(2-Hydroxy-benzylidene)-3,4,5-Trihydroxybenzoylhydrazone as Selective Inhibitor Active against NNRTIs-Resistant Variants

    Get PDF
    HIV-1 infection requires life-long treatment and with 2.1 million new infections/year, faces the challenge of an increased rate of transmitted drug-resistant mutations. Therefore, a constant and timely effort is needed to identify new HIV-1 inhibitors active against drug-resistant variants. The ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase (RT) is a very promising target, but to date, still lacks an efficient inhibitor. Here, we characterize the mode of action of N'-(2-hydroxy-benzylidene)-3,4,5-trihydroxybenzoylhydrazone (compound 13), an N-acylhydrazone derivative that inhibited viral replication (EC50 = 10 µM), while retaining full potency against the NNRTI-resistant double mutant K103N-Y181C virus. Time-of-addition and biochemical assays showed that compound 13 targeted the reverse-transcription step in cell-based assays and inhibited the RT-associated RNase H function, being >20-fold less potent against the RT polymerase activity. Docking calculations revealed that compound 13 binds within the RNase H domain in a position different from other selective RNase H inhibitors; site-directed mutagenesis studies revealed interactions with conserved amino acid within the RNase H domain, suggesting that compound 13 can be taken as starting point to generate a new series of more potent RNase H selective inhibitors active against circulating drug-resistant variants

    1,5-Dicaffeoylquinic Acid Blocks EBOV Replication Counteracting the IFN-beta Production Inhibition by the VP35 Ebola Virus Protein

    No full text
    Ebola virus (EBOV) is one of the deadliest infective agents whose high lethality is linked to the ability to efficiently bypass the host\u2019s innate antiviral response. EBOV multifunctional protein VP35 plays a major role in viral replication both as polymerase cofactor and masking agent. VP35, in fact, hides the non-self 5\u2019-ppp dsRNA from the cellular receptor RIG-I, preventing its activation and inhibiting the IFN-b production. Blocking VP35-dsRNA interaction and IFN-b suppression is a validated strategy to overcome EBOV infection. We have previously established a robust fluorescence-based biochemical assay to measure VP35-dsRNA interaction and a miniaturized gene reporter cell-based assay to measure the VP35 inhibition of the IFN-b production. Hence, we screened a library of natural extracts and found that 1,5-dicaffeoylquinic acid (DCA) inhibits dsRNA-VP35 binding with an IC50 value of 8.5 \u3bcM, it reverts the EBOV VP35 inhibition of interferon production, while it does not induce IFN production by itself. Furthermore, DCA was then tested in an EBOV minigenome replication, showing no inhibition of the VP35 polymerase cofactor activity. While, when DCA was tested on the replication of an EBOV isolate derived from the 2014 West Africa outbreak in IFN-susceptible A459 cells, it was able to inhibit viral replication with an EC50 value of 9.1 \u3bcM, showing no significant cytotoxicity. Overall, our data indicate that DCA is a powerful inhibitor of EBOV replication targeting VP35 and subverting the viral inhibitory effect on IFN production
    • …
    corecore