265 research outputs found

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse

    Cell-to-cell variability in troponin I phosphorylation in a porcine model of pacing-induced heart failure

    Get PDF
    We tested the hypothesis that myocardial contractile protein phosphorylation and the Ca2+ sensitivity of force production are dysregulated in a porcine model of pacing-induced heart failure (HF). The level of protein kinase A (PKA)-dependent cardiac troponin I (TnI) phosphorylation was lower in the myocardium surrounding the pacing electrode (pacing site) of the failing left ventricle (LV) than in the controls. Immunohistochemical assays of the LV pacing site pointed to isolated clusters of cardiomyocytes exhibiting a reduced level of phosphorylated TnI. Flow cytometry on isolated and permeabilized cardiomyocytes revealed a significantly larger cell-to-cell variation in the level of TnI phosphorylation of the LV pacing site than in the opposite region in HF or in either region in the controls: the interquartile range (IQR) on the distribution histogram of relative TnI phosphorylation was wider at the pacing site (IQR = 0.53) than that at the remote site of HF (IQR = 0.42; P = 0.0047) or that of the free wall of the control animals (IQR = 0.36; P = 0.0093). Additionally, the Ca2+ sensitivities of isometric force production were higher and appeared to be more variable in single permeabilized cardiomyocytes from the HF pacing site than in the healthy myocardium. In conclusion, the level of PKA-dependent TnI phosphorylation and the Ca2+ sensitivity of force production exhibited a high cell-to-cell variability at the LV pacing site, possibly explaining the abnormalities of the regional myocardial contractile function in a porcine model of pacing-induced HF

    Altered amygdala activation during face processing in Iraqi and Afghanistani war veterans

    Get PDF
    Abstract Background Exposure to combat can have a significant impact across a wide array of domains, and may manifest as post-traumatic stress disorder (PTSD), a debilitating mental illness that is associated with neural and affective sequelae. This study tested the hypothesis that combat-exposed individuals with and without PTSD, relative to healthy control subjects with no history of PTSD or combat exposure, would show amygdala hyperactivity during performance of a well-validated face processing task. We further hypothesized that differences in the prefrontal cortex would best differentiate the combat-exposed groups with and without PTSD. Methods Twelve men with PTSD related to combat in Operations Enduring Freedom and/or Iraqi Freedom, 12 male combat-exposed control patients with a history of Operations Enduring Freedom and/or Iraqi Freedom combat exposure but no history of PTSD, and 12 healthy control male patients with no history of combat exposure or PTSD completed a face-matching task during functional magnetic resonance imaging. Results The PTSD group showed greater amygdala activation to fearful versus happy faces than both the combat-exposed control and healthy control groups. Both the PTSD and the combat-exposed control groups showed greater amygdala activation to all faces versus shapes relative to the healthy control group. However, the combat-exposed control group relative to the PTSD group showed greater prefrontal/parietal connectivity with the amygdala, while the PTSD group showed greater connectivity with the subgenual cingulate. The strength of connectivity in the PTSD group was inversely related to avoidance scores. Conclusions These observations are consistent with the hypothesis that PTSD is associated with a deficiency in top-down modulation of amygdala activation by the prefrontal cortex and shows specific sensitivity to fearful faces

    Acylsucrose-Producing Tomato Plants Forces Bemisia tabaci to Shift Its Preferred Settling and Feeding Site

    Get PDF
    [Background] The whitefly Bemisia tabaci (Genn.) causes dramatic damage to plants by transmitting yield-limiting virus diseases. Previous studies proved that the tomato breeding line ABL 14-8 was resistant to B. tabaci, the vector of tomato yellow leaf curl disease (TYLCD). This resistance is based on the presence of type IV glandular trichomes and acylsucrose production. These trichomes deter settling and probing of B. tabaci in ABL 14-8, which reduces primary and secondary spread of TYLCD.[Methodology/Principal Findings] Whitefly settlement preference was evaluated on the adaxial and abaxial leaf surfaces of nearly-isogenic tomato lines with and without B. tabaci-resistance traits, 'ABL 14-8 and Moneymaker' respectively, under non-choice and free-choice conditions. In addition, the Electrical Penetration Graph technique was used to study probing and feeding activities of B. tabaci on the adaxial and abaxial leaf surfaces of the same genotypes. B. tabaci preferred to settle on the abaxial than on the adaxial surface of 'Moneymaker' leaves, whereas no such preference was observed on ABL 14-8 tomato plants at the ten-leaf growth stage. Furthermore, B. tabaci preferred to feed on the abaxial than on the adaxial leaf surface of 'Moneymarker' susceptible tomato plants as shown by a higher number of sustained phloem feeding ingestion events and a shorter time to reach the phloem. However, B. tabaci standard probing and feeding behavior patterns were altered in ABL 14-8 plants and whiteflies were unable to feed from the phloem and spent more time in non-probing activities when exposed to the abaxial leaf surface.[Conclusions/Significance] The distorted behavior of B. tabaci on ABL 14-8 protects tomato plants from the transmission of phloem-restricted viruses such as Tomato yellow leaf curl virus (TYLCV), and forces whiteflies to feed on the adaxial side of leaves where they feed less efficiently and become more vulnerable to natural enemies. © 2012 Rodriguez-Lopez et al.Ministerio de Ciencia e Innovación Spain (co-financed by FEDER) projects: AGL2007-66760-C02-02/AGR, AGL2007-66399-CO3-02/AGR, and AGL2010-22287-C02-01/AGR, AGL2010-22287-C02-01/AGR Consejería de Innovación y Ciencia, Junta de Andalucía, Spain (co-financed by FEDER-FSE) projects: AGR-214 and AGR-129Peer Reviewe

    Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hypothalamus

    Get PDF
    Increasing attention is now being given to the epigenetic regulation of animal and human behaviors including the stress response and drug addiction. Epigenetic factors also influence feeding behavior and metabolic phenotypes, such as obesity and insulin sensitivity. In response to fasting and high-fat diets, the medial hypothalamus changes the expression of neuropeptides regulating feeding, metabolism, and reproductive behaviors. Histone deacetylases (HDACs) are involved in the epigenetic control of gene expression and alter behavior in response to a variety of environmental factors. Here, we examined the expression of HDAC family members in the medial hypothalamus of mice in response to either fasting or a high-fat diet. In response to fasting, HDAC3 and −4 expression levels increased while HDAC10 and −11 levels decreased. Four weeks on a high-fat diet resulted in the increased expression of HDAC5 and −8. Moreover, fasting decreased the number of acetylated histone H3- and acetylated histone H4-positive cells in the ventrolateral subdivision of the ventromedial hypothalamus. Therefore, HDACs may be implicated in altered gene expression profiles in the medial hypothalamus under different metabolic states

    Interaction between Axons and Specific Populations of Surrounding Cells Is Indispensable for Collateral Formation in the Mammillary System

    Get PDF
    An essential phenomenon during brain development is the extension of long collateral branches by axons. How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft remains unclear.The principal mammillary tract (pm) is a landmark axonal bundle connecting ventral diencephalon to brainstem (through the mammillotegmental tract, mtg). Late in development, the axons of the principal mammillary tract sprout collateral branches at a very specific point forming a large bundle whose target is the thalamus. Inspection of this model showed a number of distinct, identified cell populations originated in the dorsal and the ventral diencephalon and migrating during development to arrange themselves into several discrete groups around the branching point. Further analysis of this system in several mouse lines carrying mutant alleles of genes expressed in defined subpopulations (including Pax6, Foxb1, Lrp6 and Gbx2) together with the use of an unambiguous genetic marker of mammillary axons revealed: 1) a specific group of Pax6-expressing cells in close apposition with the prospective branching point is indispensable to elicit axonal branching in this system; and 2) cooperation of transcription factors Foxb1 and Pax6 to differentially regulate navigation and fasciculation of distinct branches of the principal mammillary tract.Our results define for the first time a model system where interaction of the axonal shaft with a specific group of surrounding cells is essential to promote branching. Additionally, we provide insight on the cooperative transcriptional regulation necessary to promote and organize an intricate axonal tree

    Maternal Undernutrition and Long-term Effects on Hepatic Function

    Get PDF
    Undernutrition in utero, regardless of the source, can impair proper liver development leading to long-term metabolic dysfunction. Understanding the molecular mechanisms underlying how nutritional deficits during perinatal life lead to permanent alterations in hepatic gene expression will provide better therapeutic strategies to alleviate the undernourished liver in postnatal life. This chapter addresses the different experimental models of undernutrition in utero, and highlights the direct and indirect mechanisms involved leading to metabolic diseases in the liver. These include hypoxia, oxidative stress, epigenetic alterations, and endoplasmic reticulum (ER) stress. In addition, promising perinatal nutritional and pharmaceutical interventions are highlighted which illustrate how the placidity of the developing liver can be exploited to prevent the onset of long-term metabolic disease

    The influence of non-steroidal anti-inflammatory drugs and paracetamol used for pain control of orthodontic tooth movement: a systematic review

    Get PDF
    ABSTRACT The present study aimed to perform a systematic literature review to determine if there is a non-steroidal anti-inflammatory drug (NSAID) that interferes less within tooth movement. This research was performed according to the PRISMA statement. Articles were searched in eight electronic databases (PubMed, Scopus, Embase, Web of Science, LILACS, SciELO, Google Scholar, and Open Grey). Only experimental studies on male Wistar rats were selected, which included experiments related to the influence of NSAIDs on orthodontic movement. Studies in animals with pathological conditions, literature review articles, letters to the editor and/or editorials, case reports, abstracts, books, and book chapters were excluded. Each of the steps of this systematic literature review was performed by two examiners independently. Results: the total sample consisted of 505 articles, from which 6 studies were eligible after a qualitative analysis. From the drugs assessed, paracetamol was unanimous for not interfering within orthodontic movement when compared to the control group. However, drugs such as aspirin, ibuprofen, sodium diclofenac, and selective cyclooxygenase-2 inhibitors caused a reduction in tooth movement when compared to the control group. Conclusion: paracetamol could be considered the drug of choice for pain relief because it interferes less within tooth movement
    corecore