8,291 research outputs found

    Addressing climate change with behavioral science: A global intervention tournament in 63 countries

    No full text
    International audienceEffectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science::A global intervention tournament in 63 countries

    No full text
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science: A global intervention tournament in 63 countries

    No full text
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES

    No full text
    International audienceInteractions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce a Îł\gamma-ray flux from the Galactic Ridge. If the Îł\gamma-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the Îł\gamma-ray flux is expected from the same sky region. Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region ∣l∣<30deg⁥|l| < 30\deg, ∣b∣<2deg⁥|b| < 2\deg. The expected background in the search region is estimated using an off region with similar sky coverage. Neutrino signal originating from a power-law spectrum with slope ranging from ΓΜ=1\Gamma_\nu=1 to 44 is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge. The energy distributions in the signal region are inconsistent with the background expectation at ∌96%\sim 96\% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a slope 2.45−0.34+0.222.45^{+0.22}_{-0.34} and a flux normalization dNÎœ/dEÎœ=4.0−2.0+2.7×10−16GeV−1cm−2s−1sr−1dN_\nu/dE_\nu = 4.0^{+2.7}_{-2.0} \times 10^{-16} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed Îł\gamma-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range

    179^{179}Ta(n, Îł) cross-section measurement and the astrophysical origin of the 180^{180}Ta isotope

    Get PDF
    180m^{180m}Ta is nature\u27s rarest (quasi) stable isotope and its astrophysical origin is an open question. A possible production site of this isotope is the slow neutron capture process in asymptotic giant branch stars, where it can be produced via neutron capture reactions on unstable 179^{179}Ta. We report a new measurement of the 179^{179}Ta(n,Îł) 180^{180}Ta cross section at thermal-neutron energies via the activation technique. Our results for the thermal and resonance-integral cross sections are 952±57 and 2013±148 b, respectively. The thermal cross section is in good agreement with the only previous measurement [Phys. Rev. C 60, 025802 (1999)], while the resonance integral is different by a factor of ≈1.7. While neutron energies in this work are smaller than the energies in a stellar environment, our results may lead to improvements in theoretical predictions of the stellar cross section

    KM3NeT broadcast optical data transport system

    No full text
    International audienceThe optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV–1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed

    Probing invisible neutrino decay with KM3NeT-ORCA

    No full text
    International audienceIn the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state Îœ3\nu_3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/α3=τ3/m3<1801/\alpha_3=\tau_3/m_3 < 180~ps/eV\mathrm{ps/eV} at 90%90\% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for Ξ23\theta_{23}, Δm312\Delta m^2_{31} and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found

    179Ta(n,Îł) cross-section measurement and the astrophysical origin of the 180Ta isotope

    Get PDF
    Tantalum-180m is nature's rarest (quasi) stable isotope and its astrophysical origin is an open question. A possible production site of this isotope is the slow neutron capture process in Asymptotic Giant Branch stars, where it can be produced via neutron capture reactions on unstable 179^{179}Ta. We report a new measurement of the 179^{179}Ta(n,Îłn,\gamma)180^{180}Ta cross section at thermal neutron energies via the activation technique. Our results for the thermal and resonance-integral cross-sections are 952 ±\pm 57 b and 2013 ±\pm 148 b, respectively. The thermal cross section is in good agreement with the only previous measurement (Phys. Rev C {\bf 60} 025802, 1999), while the resonance integral is different by a factor of ≈\approx1.7. While neutron energies in this work are smaller than the energies in a stellar environment, our results may lead to improvements in theoretical predictions of the stellar cross section

    New detection systems for an enhanced sensitivity in key stellar (n,Îł) measurements

    No full text
    Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (∌mg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,Îł) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,Îł) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,Îł).Title in Web of Science: New detection systems for an enhanced sensitivity in key stellar (n,gamma) measurements</p

    Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste

    No full text
    Most plastic waste accumulates in landfills or the environment. Natural microbial metabolisms can degrade plastic polymers. Unfortunately, biodegradation of plastics is slow even under ideal conditions; depolymerization of plastic is the rate limiting step. Rapid chemical depolymerization yields biodegradable plastic monomers, improving biodegradation rates. Here we demonstrate that ammonium hydroxide depolymerizes PET into terephthalic acid and terephthalic acid monoamide which are rapidly metabolized by diverse consortia obtained from compost and sediment. By neutralizing the product with phosphoric acid prior to bioprocessing, the final product contains plastic-derived carbon and biologically accessible nitrogen and phosphorus from the process reactants, removing the need for culture medium. Three microbial consortia were able to degrade chemically deconstructed PET in ultrapure water and scavenged river water without the addition of nutrients, with no statistically significant difference in growth rate compared to communities grown on deconstructed PET in Bushnell Haas minimal culture medium. The consortia were dominated by Rhodococcus spp., Hydrogenophaga spp., and many lower abundance genera. All taxa were related to species known to degrade aromatic compounds. Microbial consortia are known to confer flexibility in processing diverse substrates. To highlight the versatility of these consortia, we also demonstrate that two microbial consortia can grow on similarly deconstructed polyesters, polyamides, and polyurethanes in water instead of medium. Our findings suggest that using microbial communities enable flexible bioprocessing of mixed plastic wastes. We also demonstrate the flexibility of this approach for coupled chemical deconstruction and bioprocessing
    • 

    corecore