578 research outputs found

    CdZnTe detectors tested at the DAΦNE collider for future kaonic atoms measurements

    No full text
    The SIDDHARTA-2 collaboration at the INFN Laboratories of Frascati (LNF) aims to perform important measurements on kaonic atoms. In parallel to the groundbreaking kaonic deuterium measurement, presently running on the DAΦNE collider at LNF, we plan to install additional detectors. The aim is to perform further kaonic atoms’ studies, taking advantage of the unique low energy and low momentum spread K− beam delivered by the at-rest decay of the ϕ meson. CdZnTe devices are ideal for detecting transitions toward both the upper and lower levels of intermediate-mass kaonic atoms, like kaonic carbon and aluminium. Measuring these transitions can have an important impact on the strangeness sector of nuclear physics. We present the results obtained in two preliminary tests conducted at DAΦNE in view of measurements foreseen in 2024, with the twofold aim to tune the timing window required to reject the extremely high electromagnetic background, and to quantify the readout saturation effect due to the high rate when placed close to the Interaction Region (IR). In the first test we used a RITEC device and electronics, while for the second one commercial REDLEN detectors were coupled to a frontend electronics customized at the University of Palermo. The results confirmed the possibility of finding and matching a proper timing window to identify the signal events and proved the better performance in terms of energy resolution of the REDLEN technology with a custom frontend electronics. In both cases, strong saturation effects were confirmed, accounting for a loss of almost 90% of the events, which will be overcome by a dedicated shielding structure foreseen for the final experimental setup

    New detection systems for an enhanced sensitivity in key stellar (n,γ) measurements

    No full text
    Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (∼mg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,γ) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,γ) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,γ).Title in Web of Science: New detection systems for an enhanced sensitivity in key stellar (n,gamma) measurements</p

    High resolution

    No full text
    Neutron capture cross section measurements of isotopes close to s-process branching-points are of fundamental importance for the understanding of this nucleosynthesis mechanism through which about 50% of the elements heavier than iron are produced. We present in this contribution the results corresponding to the high resolution measurement, for first time ever, of the 80Se(n, γ) cross section, in which 98 resonances never measured before have been reported. As a consequence, ten times more precise values for the MACS have been obtained compared to previous accepted value adopted in the astrophysical KADoNiS data base

    Kaonic atoms at the DAΦNE collider: a strangeness adventure

    Get PDF
    Kaonic atoms are an extremely efficient tool to investigate the strong interaction at the low energy Frontier, since they provide direct access to the K−N interaction at threshold, eliminating the necessity for extrapolation, unlike in the case of scattering experiments. During the 1970s and 1980s, extensive studies were performed on kaonic atoms spanning across a broad spectrum of elements in the periodic table, ranging from lithium to uranium. These measurements provided inputs and constraints for the theoretical description of the antikaon-nuclei interaction potential. Nevertheless, the existing data suffer from significant experimental uncertainties, and numerous measurements have been found to be inconsistent with more recent measurements that utilize advanced detector technology. Furthermore, there remain numerous transitions of kaonic atoms that have yet to be measured. For these reasons, a new era of kaonic atoms studies is mandatory. The DAΦNE electron-positron collider at the INFN Laboratory of Frascati (INFN-LNF) stands out as a unique source of low-energy kaons, having been utilized by Collaborations such as DEAR, SIDDHARTA, and AMADEUS for groundbreaking measurements of kaonic atoms and kaon-nuclei interactions. Presently, the SIDDHARTA-2 experiment is installed at DAΦNE, aiming to perform the first-ever measurement of the 2p → 1s x-ray transition in kaonic deuterium, a crucial step towards determining the isospin-dependent antikaon-nucleon scattering lengths. Based on the experience gained with the SIDDHARTA experiment, which performed the most precise measurement of the kaonic hydrogen 2p → 1s x-ray transition, the SIDDHARTA-2 setup is now fully equipped for the challenging kaonic deuterium measurement. In this paper, we present a comprehensive description of the SIDDHARTA-2 setup and of the first kaonic atoms measurements performed during the commissioning phase of the DAΦNE collider. We also outline a proposal for future measurements of kaonic atoms at DAΦNE beyond SIDDHARTA-2, which is intended to stimulate discussions within the broad scientific community performing research, directly or indirectly, related to this field

    Measurement of the 77Se(n,γ)^{77}Se ( n , γ ) cross section up to 200 keV at the n_TOF facility at CERN

    Get PDF
    The 77Se(n,γ)^{77}Se ( n , γ ) reaction is of importance for 77Se^{77}Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se^{77}Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT=5 keVkT=5 \space keV and kT=100 keVkT=100\space keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se^{77}Se abundances produced through the slow neutron capture process in selected stellar models of 15M⊙15M⊙ and 2M⊙2M⊙, respectively, compared to using previous recommendation of the cross section

    Measurement of the

    No full text
    The neutron capture cross section of 241Am is an important quantity for nuclear energy production and fuel cycle scenarios. Several measurements have been performed in recent years with the aim to reduce existing uncertainties in evaluated data. Two previous measurements, performed at the 185 m flight-path station EAR1 of the neutron time-of-flight facility n_TOF at CERN, have permitted to substantially extend the resolved resonance region, but suffered in the near-thermal energy range from the unfavorable signal-to-background ratio resulting from the combination of the high radioactivity of 241Am and the rather low thermal neutron flux. The here presented 241Am(n,γ) measurement, performed with C6D6 liquid scintillator gamma detectors at the 20 m flight-path station EAR2 of the n_TOF facility, took advantage of the much higher neutron flux. The current status of the analysis of the data, focussed on the low-energy region, will be described here

    Kaonic atoms measurements with SIDDHARTA-2

    No full text
    Abstract The SIDDHARTA-2 collaboration is aiming to perform the challenging measurement of kaonic deuterium X-ray transitions to the ground state. This will allow to extract the isospin-dependent antikaon-nucleon scattering lengths, providing input to the theory of Quantum Chromodynamics (QCD) in the non-perturbative regime with strangeness. This work describes the SIDDHARTA-2 experimental apparatus and presents the results obtained during the commissioning phase realized with kaonic helium measurements. In particular, the first observation of the kaonic helium transitions to the 3s level (M-lines), reported in this work, represents a new source of information to study the kaonic helium cascade process and demonstrates the potential of the SIDDHARTA-2 apparatus, in the view of the ambitious kaonic deuterium measurement

    Compton imaging for enhanced sensitivity (n,γ) cross section TOF experiments: Status and prospects

    No full text
    Radiative neutron-capture cross sections are of pivotal importance in many fields such as nucle-osynthesis studies or innovative reactor technologies. A large number of isotopes have been measured with high accuracy, but there are still a large number of relevant isotopes whose cross sections could not be experimentally determined yet, at least with sufficient accuracy and completeness, owing to limitations in detection techniques, sample production methods or in the facilities themselves. In the context of the HYMNS (High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions) project over the last six years we have developed a novel detection technique aimed at background suppression in radiative neutron-capture time-of-flight measurements. This new technique utilizes a complex detection set-up based on position-sensitive radiation-detectors deployed in a Compton-camera array configuration. The latter enables to implement gamma-ray imaging techniques, which help to disentangle true capture events arising from the sample under study and contaminant background events from the surroundings. A summary on the main developments is given in this contribution together with an update on recent experiments at CERN n_TOF and an outlook on future steps

    Measurement of the <math><mrow><mmultiscripts><mi>Se</mi><mprescripts/><none/><mn>77</mn></mmultiscripts><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></math> cross section up to 200 keV at the n_TOF facility at CERN

    Get PDF
    International audienceThe Se77(n,γ) reaction is of importance for Se77 abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the Se77 radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT=5keV and kT=100keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in Se77 abundances produced through the slow neutron capture process in selected stellar models of 15M⊙ and 2M⊙, respectively, compared to using previous recommendation of the cross section
    • …
    corecore