5,860 research outputs found

    Ultrafast nonlinear optical response of Dirac fermions in graphene

    Get PDF
    The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.Peer ReviewedPostprint (published version

    Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision.

    Get PDF
    Peripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively estimating bone mechanical properties. Previous studies have demonstrated pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remains unknown. The aim of the current study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index [SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans

    Timescales of spike-train correlation for neural oscillators with common drive

    Full text link
    We examine the effect of the phase-resetting curve (PRC) on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy, super-threshold stimulation. We use linear response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem, and contrast the results for Type I vs. Type II models and across the different timescales over which spike correlations can be assessed. We find that, on long timescales, Type I oscillators transfer correlations much more efficiently than Type II oscillators. On short timescales this trend reverses, with the relative efficiency switching at a timescale that depends on the mean and standard deviation of input currents. This switch occurs over timescales that could be exploited by downstream circuits

    Exploring the use of new school buildings through post-occupancy evaluation and participatory action research

    Get PDF
    This paper presents the results of the development and testing of an integrated post-occupancy evaluation (POE) approach for teachers, staff, pupils and community members using newly constructed school buildings. It focusses on three cases of UK secondary schools, demonstrating how users can be inspired to engage with the problems of school design and energy use awareness. The cases provided new insights into the engagement of school teachers, staff and young people regarding issues of sustainability, management, functional performance and comfort. The integrative approach adopted in these cases provided a more holistic understanding of these buildings’ performance than could have been achieved by either observational or more traditional questionnaire-based methods. Moreover, the whole-school approach, involving children in POE, provided researchers with highly contextualised information about how a school is used, how to improve the quality of school experiences (both socially and educationally) and how the school community is contributing to the building's energy performance. These POE methods also provided unique opportunities for children to examine the social and cultural factors impeding the adoption of energy-conscious and sustainable behaviours

    Renewal processes and fluctuation analysis of molecular motor stepping

    Get PDF
    We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase

    Dendrogram Analysis of Large-Area CARMA Images in Perseus: the Dense Gas in NGC 1333, Barnard 1, and L1451

    Get PDF
    We present spectral line maps of the dense gas across 400 square arcminutes of the Perseus Molecular Cloud, focused on NGC 1333, Barnard 1, and L1451. We constructed these maps as part of the CARMA Large Area Star-formation Survey (CLASSy), which is a CARMA key project that connects star forming cores to their natal cloud environment. This is achieved by leveraging CARMA's high angular resolution, imaging capability, and high efficiency at mosaicing large areas of the sky. CLASSy maps capture the structure and kinematics of N2H+, HCN, and HCO+ J=1-0 emission from thousand AU to parsec scales in three evolutionarily distinct regions of Perseus (in addition to two regions in Serpens). We show results from a non-binary dendrogram analysis of the Perseus N2H+ emission, which answers questions about the turbulent properties of the dense gas across evolutionary stages and across the range of size scales probed by CLASSy. There is a flat relation between mean internal turbulence and structure size for the dense gas in NGC 1333 and Barnard 1, but the magnitude of internal turbulence increases with nearby protostellar activity; the dense gas in the B1 main core and NGC 1333, which have active young stars, are characterized by mostly transonic to supersonic turbulence, while the filaments and clumps southwest of the B1 main core, which have no active young stars, have mostly subsonic turbulence. We have recently completed the observations of L1451, and results for that region will be revealed at the meeting. Released CLASSy data products can be found on our project website.Fil: Storm, Shaye. University of Maryland; Estados UnidosFil: Mundy, Lee G.. University of Maryland; Estados UnidosFil: Teuben, Peter J.. University of Maryland; Estados UnidosFil: Lee, Katherine. University of Maryland; Estados UnidosFil: Looney, Leslie. University of Illinois at Urbana; Estados UnidosFil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Rosolowsky, Erik. University of Alberta; CanadáFil: Arce, Hector G.. University of Yale; Estados UnidosFil: Shirley, Yancy L.. University of Arizona; Estados UnidosFil: Segura Cox, Dominique. University of Illinois; Estados UnidosFil: Isella, Andrea. Caltech; Estados UnidosFil: CLASSy Collaboration. No especifíca;223rd American Astronomical Society MeetingWashingtonEstados UnidosAmerican Astronomical Societ

    Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance

    Get PDF
    A vaccine for hepatitis C virus (HCV) is urgently needed. Development of broadly neutralizing plasma antibodies during acute infection is associated with HCV clearance, but the viral epitopes of these plasma antibodies are unknown. Identifying these epitopes could define the specificity and function of neutralizing antibodies (NAbs) that should be induced by a vaccine. Here, we present the development and application of a high-throughput method that deconvolutes polyclonal anti-HCV NAbs in plasma, delineating the epitope specificities of anti-HCV NAbs in acute-infection plasma of 44 humans with subsequent clearance or persistence of HCV. Remarkably, we identified multiple broadly neutralizing antibody combinations that were associated with greater plasma neutralizing breadth and with HCV clearance. These studies have the potential to inform new strategies for vaccine development by identifying broadly neutralizing antibody combinations in plasma associated with the natural clearance of HCV, while also providing a high-throughput assay that could identify these responses after vaccination trials
    • …