56 research outputs found

    Rubin Observatory LSST Transients and Variable Stars Roadmap

    No full text
    International audienceThe Vera C. Rubin Legacy Survey of Space and Time (LSST) holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey’s first light

    Gaia Data Release 3: the extragalactic content

    No full text
    The Gaia Galactic survey mission is designed and optimized to obtain astrometry, photometry, and spectroscopy of nearly two billion stars in our Galaxy. Yet as an all-sky multi-epoch survey, Gaia also observes several million extragalactic objects down to a magnitude of G ∌ 21 mag. Due to the nature of the Gaia onboard-selection algorithms, these are mostly point-source-like objects. Using data provided by the satellite, we have identified quasar and galaxy candidates via supervised machine learning methods, and estimate their redshifts using the low resolution BP/RP spectra. We further characterise the surface brightness profiles of host galaxies of quasars and of galaxies from pre-defined input lists. Here we give an overview of the processing of extragalactic objects, describe the data products in Gaia DR3, and analyse their properties. Two integrated tables contain the main results for a high completeness, but low purity (50−70%), set of 6.6 million candidate quasars and 4.8 million candidate galaxies. We provide queries that select purer sub-samples of these containing 1.9 million probable quasars and 2.9 million probable galaxies (both ∌95% purity). We also use high quality BP/RP spectra of 43 thousand high probability quasars over the redshift range 0.05−4.36 to construct a composite quasar spectrum spanning restframe wavelengths from 72−1000 nm.The Gaia mission and data processing have been financially supported by, in alphabetical order by country: - the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; - the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; - the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences – Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy – PARADISE); - the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) – ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); - the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin); - the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100; - the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 ‘Mining the Variable Sky’, with the funds of the Croatian-Swiss Research Programme; - the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; - the Danish Ministry of Science; - the Estonian Ministry of Education and Research through grant IUT40-1; - the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; - the European Cooperation in Science and Technology (COST) through COST Action CA18104 ‘Revealing the Milky Way with Gaia (MW-Gaia)’; - the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 (Our Galaxy at full HD – Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin), 716155 (Structured ACCREtion Disks – SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys – UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences – EXPLORE); - the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); - the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia; - the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation; - the French Centre National d’Études Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’ programme, through grant ANR-15-CE31-0007 for project ‘Modelling the Milky Way in the Gaia era’ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project ‘The Milky Way disc formation in the Gaia era’ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project ‘Unlocking the potential of Cepheids as primary distance calibrators’ (UnlockCepheids), through grant ANR-19-CE31-0017 for project ‘Secular evolution of galxies’ (SEGAL), and through grant ANR-18-CE31-0006 for project ‘Galactic Dark Matter’ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the ‘Action FĂ©dĂ©ratrice Gaia’ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; - the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time; - the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (‘SeismoLab’); - the Science Foundation Ireland (SFI) through a Royal Society – SFI University Research Fellowship (M. Fraser); - the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant; - the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project ‘MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology’ (MITiC); - the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); - the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; - the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/00099/2020 for the Centro de AstrofĂ­sica e Gravitação (CENTRA); - the Slovenian Research Agency through grant P1-0188; - the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (‘ComputaciĂłn de Altas Prestaciones VII’), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund ‘A way of making Europe’) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘MarĂ­a de Maeztu’) through grant CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund – Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre – Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project ‘Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels’ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (‘Investing in your future’); - the Swedish National Space Agency (SNSA/Rymdstyrelsen); the Swiss State Secretariat for Education, Research, and Innovation through the Swiss ActivitĂ©s Nationales ComplĂ©mentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson); - the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/1. We made use of the following tools in the preparation of this paper: (SIMBAD, Wenger et al. 2000) and VizieR (Ochsenbein et al. 2000) operated at (CDS) Strasbourg; NASA ADS; TOPCAT (Taylor 2005); Matplotlib (Hunter 2007); IPython (PĂ©rez & Granger 2007); Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2018); R (R Core Team 2020); HEALpixel (GĂłrski et al. 2005). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de AstrofĂ­sica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut fĂŒr Astrophysik Potsdam (AIP), Max-Planck-Institut fĂŒr Astronomie (MPIA Heidelberg), Max-Planck-Institut fĂŒr Astrophysik (MPA Garching), Max-Planck-Institut fĂŒr Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, ObservatĂĄrio Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional AutĂłnoma de MĂ©xico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University

    35th International Cosmic Ray Conference, ICRC 2017

    Get PDF
    PKS1510-089 is a flat spectrum radio quasar located at a redshift of 0.36. It is one of only a few such sources detected in very-high-energy (VHE, >100 GeV) gamma rays. Though PKS1510-089 is highly variable at GeV energies, until recently no variability has been observed in the VHE band. In 2015 May PKS1510-089 showed a high state in optical and in the GeV range. A VHE gamma-ray flare was detected with MAGIC at that time, showing the first instance of VHE gamma-ray flux variability on the time scale of days in this source. We will present the MAGIC results from this observation, discuss their temporal and spectral properties in the multi-wavelength context and present modelling of such emission in the external Compton scenario.</p

    The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping

    Full text link
    peer reviewedThe Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will detect an unprecedentedly large sample of actively accreting supermassive black holes with typical accretion disk (AD) sizes of a few light days. This brings us to face challenges in the reverberation mapping (RM) measurement of AD sizes in active galactic nuclei using interband continuum delays. We examine the effect of LSST cadence strategies on AD RM using our metric AGN_TimeLagMetric. It accounts for redshift, cadence, the magnitude limit, and magnitude corrections for dust extinction. Running our metric on different LSST cadence strategies, we produce an atlas of the performance estimations for LSST photometric RM measurements. We provide an upper limit on the estimated number of quasars for which the AD time lag can be computed within 0 1000 sources in each deep drilling field (DDF; (10 deg2)) in any filter, with the redshift distribution of these sources peaking at z ≍ 1. We find the LSST observation strategies with a good cadence (â‰Č5 days) and a long cumulative season (~9 yr), as proposed for LSST DDF, are favored for the AD size measurement. We create synthetic LSST light curves for the most suitable DDF cadences and determine RM time lags to demonstrate the impact of the best cadences based on the proposed metric

    Gaia Data Release 3: The first Gaia catalogue of variable AGN

    Full text link
    One of the novelties of the Gaia-DR3 with respect to the previous data releases is the publication of the multiband light curves of about 1 million AGN. The goal of this work was the creation of a catalogue of variable AGN, whose selection was based on Gaia data only. We first present the implementation of the methods to estimate the variability parameters into a specific object study module for AGN. Then we describe the selection procedure that led to the definition of the high-purity variable AGN sample and analyse the properties of the selected sources. We started from a sample of millions of sources, which were identified as AGN candidates by 11 different classifiers based on variability processing. Because the focus was on the variability properties, we first defined some pre-requisites in terms of number of data points and mandatory variability parameters. Then a series of filters was applied using only Gaia data and the Gaia Celestial Reference Frame 3 (Gaia-CRF3) sample as a reference.The resulting Gaia AGN variable sample, named GLEAN, contains about 872000 objects, more than 21000 of which are new identifications. We checked the presence of contaminants by cross-matching the selected sources with a variety of galaxies and stellar catalogues. The completeness of GLEAN with respect to the variable AGN in the last Sloan Digital Sky Survey quasar catalogue is about 47%, while that based on the variable AGN of the Gaia-CRF3 sample is around 51%. From both a comparison with other AGN catalogues and an investigation of possible contaminants, we conclude that purity can be expected to be above 95%. Multiwavelength properties of these sources are investigated. In particular, we estimate that about 4% of them are radio-loud. We finally explore the possibility to evaluate the time lags between the flux variations of the multiple images of strongly lensed quasars, and show one case.Comment: 19 pages, 31 figures, 2 table. This paper is part of Gaia Data Release 3 (DR3). In press for A&

    Detection of a quasi-periodic oscillation in the optical light curve of the remarkable blazar AO 0235+164

    Full text link
    We present a long term optical RR band light curve analysis of the gravitationally lensed blazar AO 0235+164 in the time span 1982 - 2019. Several methods of analysis lead to the result that there is a periodicity of ~8.13 years present in these data. In addition, each of these five major flares are apparently double-peaked, with the secondary peak following the primary one by ~2 years. Along with the well known system, OJ 287, our finding constitutes one of the most secure cases of long term quasi-periodic optical behaviour in a blazar ever found. A binary supermassive black hole system appears to provide a good explanation for these results.Comment: 7 pages, 3 figures, 1 table, Accepted for publication in MNRA

    Studying the Extreme Behaviour of 1ES 2344+51.4

    No full text
    The BL Lac type object 1ES 2344+51.4 (redshift z = 0.044) was one of the first sources to be included in the extreme high-peaked BL Lac (EHBL) family. EHBLs are characterised by a broadband spectral energy distribution (SED) featuring the synchrotron peak above ∌ 1017 Hz. From previous studies of 1ES 2344+51.4 in the very-high-energy (VHE, >100 GeV) gamma-ray range, its inverse Compton (IC) peak is expected around 200 GeV. 1ES 2344+51.4 was first detected in the VHE range by Whipple in 1995 during a very bright outburst showing around 60% of the flux of the Crab Nebula above 350 GeV. In 1996, during another flare in the X-ray band, observations with Beppo-SAX revealed a large 0.1-10 keV flux variability on timescales of a few hours and an impressive frequency shift of the synchrotron peak to above 1018 Hz. Later on, this extreme behaviour of the source motivated several multiwavelength campaigns, during most of which the source appeared to be in a low state and showing no clear signs of “extremeness”. In August 2016, FACT detected 1ES 2344+51.4 in a high state and triggered multiwavelength observations. The VHE observations show a flux level similar to the historical maximum of 1995. The combination of MAGIC, FACT, and Fermi-LAT spectra provides an unprecedented characterisation of the IC peak. It is the first time that simultaneous HE and VHE data are presented for this object during a flaring episode. We find an atypically hard spectrum in the VHE Îł-rays as well as a hard X-ray spectrum, revealing a renewed extreme behaviour.ISSN:1824-803

    Blazar Variability with the Vera C. Rubin Legacy Survey of Space and Time

    Get PDF
    With their emission mainly coming from a relativistic jet pointing toward us, blazars are fundamental sources for studying extragalactic jets and their central engines, consisting of supermassive black holes fed by accretion disks. They are also candidate sources of high-energy neutrinos and cosmic rays. Because of the jet orientation, the nonthermal blazar emission is Doppler beamed; its variability is unpredictable, and it occurs on timescales from less than 1 hr to years. Comprehension of the diverse mechanisms producing the flux and spectral changes requires well-sampled multiband light curves over long time periods. In particular, outbursts are the best test bench for shedding light on the underlying physics, especially when studied in a multiwavelength context. The Vera C. Rubin Legacy Survey of Space and Time (Rubin-LSST) will monitor the southern sky for 10 yr in six photometric bands, offering a formidable tool for studying blazar variability features in a statistical way. The alert system will allow us to trigger follow-up observations of outstanding events, especially at high (keV-to-GeV) and very high (TeV) energies. We here examine the simulated Rubin-LSST survey strategies with the aim of understanding which cadences are more suitable for blazar variability science. Our metrics include light curve and color sampling. We also investigate the problem of saturation, which will affect the brightest and many flaring sources, and will have a detrimental impact on follow-up observations

    Polarimetric Properties of Blazars Caught by the WEBT

    Get PDF
    Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called "blazars". The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the gamma-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies.Comment: Review published in "Galaxies" as part of the Special Issue "Polarimetry as a Probe of Magnetic Fields in AGN Jets", Academic Editors: Margo Aller, Jose L. G\'omez and Eric Perlma