146 research outputs found

    Aerobic fitness is associated with greater white matter integrity in children

    Get PDF
    Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA) in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks. © 2014 Chaddock-Heyman, Erickson, Holtrop, Voss, Pontifex, Raine, Hillman and Kramer

    Musical Instrument Practice Predicts White Matter Microstructure and Cognitive Abilities in Childhood

    Get PDF
    Musical training has been associated with advantages in cognitive measures of IQ and verbal ability, as well as neural measures including white matter microstructural properties in the corpus callosum (CC) and the superior longitudinal fasciculus (SLF). We hypothesized that children who have musical training will have different microstructural properties in the SLF and CC. One hundred children aged 7.9–9.9 years (mean age 8.7) were surveyed for their musical activities, completed neuropsychological testing for general cognitive abilities, and underwent diffusion tensor imaging (DTI) as part of a larger study. Children who play a musical instrument for more than 0.5 h per week (n = 34) had higher scores on verbal ability and intellectual ability (standardized scores from the Woodcock-Johnson Tests of Cognitive Abilities), as well as higher axial diffusivity (AD) in the left SLF than those who did not play a musical instrument (n = 66). Furthermore, the intensity of musical practice, quantified as the number of hours of music practice per week, was correlated with axial diffusivity (AD) in the left SLF. Results are not explained by age, sex, socio-economic status, or physical fitness of the participants. The results suggest that the relationship between musical practice and intellectual ability is related to the maturation of white matter pathways in the auditory-motor system. The findings suggest that musical training may be a means of improving cognitive and brain health during development

    Cardiovascular Fitness and Creativity in Children

    Get PDF
    Creativity permeates virtually all aspects of humanity, as human-made creations and connections are all around us. Another common human phenomenon is aerobic exercise, and its corresponding, longer-term condition, cardiovascular fitness. Multiple studies support cardiovascular fitness as a positive correlate of, and aerobic exercise as an inducer of, cognitive benefits and both structural and functional brain changes, across ages and species. From an understanding of the relationships between aerobic exercise/cardiovascular fitness and certain neurocognitive changes, along with an understanding of the neural processes underlying creativity, a theoretical psychophysiological relationship between aerobic exercise/cardiovascular fitness and creativity appears. There is indirect support that neural and behavioral changes induced by exercise, or consistent with high cardiovascular fitness, may result in improved creativity. However, there is currently little research examining this relationship. Additionally, the relationship of aerobic exercise/cardiovascular fitness and creativity has seemingly been unexamined in children. In this study, cardiovascular fitness levels of eight 9-11 year olds, as determined by a maximal oxygen consumption test, were related to both the number and uniqueness of appropriate responses in creativity tasks. There were no significant correlations between cardiovascular fitness and these creativity measures. The limited sample size hindered the ability to ascertain a more complete analysis of these relationships. Future research should include a larger sample size, take into consideration factors such as motivation, sleep, and stress, and perform neuroimaging. These would allow a more comprehensive understanding of the relationship between cardiovascular fitness and creativity.Ope

    The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children

    Get PDF
    Growing evidence suggests that aerobic fitness benefits the brain and cognition during childhood. The present study is the first to explore cortical brain structure of higher fit and lower fit 9-and 10-year-old children, and how aerobic fitness and cortical thickness relate to academic achievement. We demonstrate that higher fit children (>70th percentile VO2max) showed decreased gray matter thickness in superior frontal cortex, superior temporal areas, and lateral occipital cortex, coupled with better mathematics achievement, compared to lower fit children (<30th percentile VO2max). Furthermore, cortical gray matter thinning in anterior and superior frontal areas was associated with superior arithmetic performance. Together, these data add to our knowledge of the biological markers of school achievement, particularly mathematics achievement, and raise the possibility that individual differences in aerobic fitness play an important role in cortical gray matter thinning during brain maturation. The establishment of predictors of academic performance is key to helping educators focus on interventions to maximize learning and success across the lifespan

    Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Get PDF
    Citation: Wong, C. N., Chaddock-Heyman, L., Voss, M. W., Burzynska, A. Z., Basak, C., Erickson, K. I., . . . Kramer, A. F. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, 10. doi:10.3389/fnagi.2015.00154Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function

    Physical Activity Increases White Matter Microstructure in Children

    Get PDF
    Children are becoming increasingly inactive, unfit, and overweight, yet there is relatively little causal evidence regarding the effects of physical activity on brain health during childhood. The present study examined the effects of an after-school physical activity program (FITKids2) on the microstructure of white matter tracts in 7- to 9-year-old children. We measured the microstructural properties of white matter via diffusion tensor imaging in 143 children before and after random assignment to either a 9-month after-school physical activity program (N = 76, mean age = 8.7 years) or a wait list control group (N = 67, mean age = 8.7 years). Our results demonstrate that children who participated in the physical activity program showed increased white matter microstructure in the genu of the corpus callosum, with no changes in white matter microstructure in the wait list control group which reflects typical development. Specifically, children in the physical activity program showed increases in fractional anisotropy (FA) and decreases in radial diffusivity (RD) in the genu from pre- to post-test, thereby suggesting more tightly bundled and structurally compact fibers (FA) and increased myelination (RD), with no changes in estimates of axonal fiber diameter (axial diffusivity, AD). The corpus callosum integrates cognitive, motor, and sensory information between the left and right hemispheres of the brain, and the white matter tract plays a role in cognition and behavior. Our findings reinforce the importance of physical activity for brain health during child development

    Physical fitness and academic performance in youth: A systematic review

    Get PDF
    Physical fitness (PF) is a construct of health- and skill-related attributes which have been associated with academic performance (AP) in youth. This study aimed to review the scientific evidence on the association among components of PF and AP in children and adolescents. A systematic review of articles using databases PubMed/Medline, ERIC, LILACS, SciELO, and Web of Science was undertaken. Cross-sectional and longitudinal studies examining the association between at least one component of PF and AP in children and adolescents, published between 1990 and June 2016, were included. Independent extraction of articles was carried out by the two authors using predefined data fields. From a total of 45 studies included, 25 report a positive association between components of PF with AP and 20 describe a single association between cardiorespiratory fitness (CRF) and AP. According to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines: 12 were classified as low, 32 as medium risk, and 1 as high risk of bias. Thirty-one studies reported a positive association between AP and CRF, six studies with muscular strength, three studies with flexibility, and seven studies reported a positive association between clustered of PF components and AP. The magnitude of the associations is weak to moderate (=0.10-0.42 and odds=1.01-4.14). There is strong evidence for a positive association between CRF and cluster of PF with AP in cross-sectional studiesand evidence from longitudinal studies for a positive association between cluster of PF and APthe relationship between muscular strength and flexibility with AP remains uncertain.Medical Research CouncilUniv Pernambuco, Phys Educ Post Grad Program, Recife, PE, BrazilTeesside Univ, Sch Hlth & Social Care, Middlesbrough, Cleveland, EnglandUniv Colorado, Denver, CO 80202 USAUniv Fed Sao Paulo, Dept Human Movement Sci, Silva Jardim 136, BR-11015020 Santos, SP, BrazilUniv Fed Sao Paulo, Dept Human Movement Sci, Silva Jardim 136, BR-11015020 Santos, SP, BrazilMedical Research Council: MR/K02325X/1Web of Scienc

    Physical Fitness, White Matter Volume and Academic Performance in Children: Findings From the ActiveBrains and FITKids2 Projects

    Get PDF
    Objectives: The aims of this study were (i) to examine the association between cardiorespiratory fitness and white matter volume and test whether those associations differ between normal-weight and overweight/obese children (ii) to analyze the association between other physical fitness components (i.e., motor and muscular) and white matter volume, and (iii) to examine whether the fitness-related associations in white matter volume were related to academic performance.Methods: Data came from two independent projects: ActiveBrains project (n = 100; 10.0 ± 1.1 years; 100% overweight/obese; Spain) and FITKids2 project (n = 242; 8.6 ± 0.5 years; 36% overweight/obese, United States). Cardiorespiratory fitness was assessed in both projects, and motor and muscular fitness were assessed in the ActiveBrains project. T1-weighted images were acquired with a 3.0 T S Magnetom Tim Trio system. Academic performance was assessed by standardized tests.Results: Cardiorespiratory fitness was associated with greater white matter volume in the ActiveBrain project (P &lt; 0.001, k = 177; inferior fronto-opercular gyrus and inferior temporal gyrus) and in the FITKids project (P &lt; 0.001, k = 117; inferior temporal gyrus, cingulate gyrus, middle occipital gyrus and fusiform gyrus) among overweight/obese children. However, no associations were found among normal-weight children in the FITKids project. In the ActiveBrains project, motor fitness was related to greater white matter volume (P &lt; 0.001, k = 173) in six regions, specifically, insular cortex, caudate, bilateral superior temporal gyrus and bilateral supramarginal gyrus; muscular fitness was associated with greater white matter volumes (P &lt; 0.001, k = 191) in two regions, particularly, the bilateral caudate and bilateral cerebellum IX. The white matter volume of six of these regions were related to academic performance, but after correcting for multiple comparisons, only the insular cortex remained significantly related to math calculations skills (β = 0.258; P &lt; 0.005). In both projects, no brain regions showed a statistically significant negative association between any physical fitness component and white matter volume.Conclusion: Cardiorespiratory fitness may positively relate to white matter volume in overweight/obese children, and in turn, academic performance. In addition, motor and muscular fitness may also influence white matter volume coupled with better academic performance. From a public health perspective, implementing exercise interventions that combine aerobic, motor and muscular training to enhance physical fitness may benefit brain development and academic success

    Limbic-thalamo-cortical projections and reward-related circuitry integrity affects eating behavior: A longitudinal DTI study in adolescents with restrictive eating disorders.

    Get PDF
    Few studies have used diffusion tensor imaging (DTI) to investigate the micro-structural alterations of WM in patients with restrictive eating disorders (rED), and longitudinal data are lacking. Twelve patients with rED were scanned at diagnosis and after one year of family-based treatment, and compared to twenty-four healthy controls (HCs) through DTI analysis. A tract-based spatial statistics procedure was used to investigate diffusivity parameters: fractional anisotropy (FA) and mean, radial and axial diffusivities (MD, RD and AD, respectively). Reduced FA and increased RD were found in patients at baseline in the corpus callosum, corona radiata and posterior thalamic radiation compared with controls. However, no differences were found between follow-up patients and controls, suggesting a partial normalization of the diffusivity parameters. In patients, trends for a negative correlation were found between the baseline FA of the right anterior corona radiata and the Eating Disorder Examination Questionnaire total score, while a positive trend was found between the baseline FA in the splenium of corpus callosum and the weight loss occurred between maximal documented weight and time of admission. A positive trend for correlation was also found between baseline FA in the right anterior corona radiata and the decrease in the Obsessive-Compulsive Inventory Revised total score over time. Our results suggest that the integrity of the limbic-thalamo-cortical projections and the reward-related circuitry are important for cognitive control processes and reward responsiveness in regulating eating behavior

    Associations Between Physical Fitness and Brain Structure in Young Adulthood

    Get PDF
    A comprehensive analysis of associations between physical fitness and brain structure in young adulthood is lacking, and further, it is unclear the degree to which associations between physical fitness and brain health can be attributed to a common genetic pathway or to environmental factors that jointly influences physical fitness and brain health. This study examined genotype-confirmed monozygotic and dizygotic twins, along with non-twin full-siblings to estimate the contribution of genetic and environmental factors to variation within, and covariation between, physical fitness and brain structure. Participants were 1,065 young adults between the ages of 22 and 36 from open-access Young Adult Human Connectome Project (YA-HCP). Physical fitness was assessed by submaximal endurance (2-min walk test), grip strength, and body mass index. Brain structure was assessed using magnetic resonance imaging on a Siemens 3T customized ‘Connectome Skyra’ at Washington University in St. Louis, using a 32-channel Siemens head coil. Acquired T1-weighted images provided measures of cortical surface area and thickness, and subcortical volume following processing by the YA-HCP structural FreeSurfer pipeline. Diffusion weighted imaging was acquired to assess white matter tract integrity, as measured by fractional anisotropy, following processing by the YA-HCP diffusion pipeline and tensor fit. Following correction for multiple testing, body mass index was negatively associated with fractional anisotropy in various white matter regions of interest (all | z| statistics &gt; 3.9) and positively associated with cortical thickness within the right superior parietal lobe (z statistic = 4.6). Performance-based measures of fitness (i.e., endurance and grip strength) were not associated with any structural neuroimaging markers. Behavioral genetic analysis suggested that heritability of white matter integrity varied by region, but consistently explained &gt;50% of the phenotypic variation. Heritability of right superior parietal thickness was large (∼75% variation). Heritability of body mass index was also fairly large (∼60% variation). Generally, 12 to 23 of the correlation between brain structure and body mass index could be attributed to heritability effects. Overall, this study suggests that greater body mass index is associated with lower white matter integrity, which may be due to common genetic effects that impact body composition and white matter integrity
    • …
    corecore