403 research outputs found

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by μm2M/μK,\mu \leq m\leq 2M/\mu _K, where μ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and μK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential μ,\mu , the mass spectrum is shown to be bounded by μm2M/μK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/μK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    Measurement of the form-factor ratios for D+ --> K* l nu

    Full text link
    The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm hadroproduction experiment E791 at Fermilab. From 3034 (595) signal (background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09, r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33 +-0.29. The values of the form factor ratios rv and r2 measured for the muon channel are combined with the values of rv and r2 that we have measured in the electron channel. The combined E791 results for the muon and electron channels are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL
    corecore