152 research outputs found

    p63 immunoexpression in hair follicles of normal and alopecia X-affected skin of Pomeranian dogs

    No full text
    Background: Alopecia X in Pomeranians is caused by a hair cycle deregulation, associated with downregulation of key regulatory genes of the Wnt and Shh pathways, and stem-cell markers. However, the pathogenesis remains unclear. p63 is an important transcription factor correlated with the aforementioned hair cycle modulating genes. Hypothesis/objectives: The aim of this study was to highlight possible changes of p63 immunohistochemical expression within the hair follicles in canine alopecia X compared with normal skin. Animals: Skin biopsies from 19 alopecia X-affected and six control Pomeranians were analysed. Materials and methods: Serial histological sections of skin biopsies harbouring anagen, telogen and kenogen hair follicles were immunohistochemically evaluated for differences in p63 expression in the affected and control samples. Results: Dogs with alopecia X had a significantly decreased immunoexpression of p63 in telogen and kenogen hair follicles. Conclusions and clinical relevance: The decrease of p63 immunoexpression observed in canine alopecia X suggests an involvement of p63 in hair cycle

    Advancing bovine in vitro fertilization through 3D printing: the effect of the 3D printed materials

    Get PDF
    Nowadays there is an increasing demand for assisted reproductive technologies due to the growth of infertility problems. Naturally, fertilization occurs in the oviduct, where the oviductal epithelial cells (OECs) secrete many molecules that affect the embryo's metabolism and protect it from oxidative stress. When the OECs are grown in 3D culture systems, they maintain a great part of their functional characteristics, making them an excellent model for in vitro fertilization (IVF) studies. In this work, we aimed to evaluate the suitability of different 3D-printing processes in conjunction with the corresponding set of commercially available biomaterials: extrusion-based processing using polylactic acid (PLA) and polycaprolactone (PCL) and stereolithography or digital-light processing using polyethylene-glycol-diacrylate (PEGDA) with different stiffness (PEGDA500, PEGDA200, PEGDA PhotoInk). All the 3D-printed scaffolds were used to support IVF process in a bovine embryo assay. Following fertilization, embryo development and quality were assessed in terms of cleavage, blastocyst rate at days 7 and 8, total cell number (TCN), inner cell mass/trophectoderm ratio (ICN/TE), and apoptotic cell ratio (ACR). We found a detrimental effect on cleavage and blastocyst rates when the IVF was performed on any medium conditioned by most of the materials available for digital-light processing (PEGDA200, PEGDA500). The observed negative effect could be possibly due to some leaked compound used to print and stabilize the scaffolds, which was not so evident however with PEGDA PhotoInk. On the other hand, all the extrusion-based processable materials did not cause any detrimental effect on cleavage or blastocyst rates. The principal component analysis reveals that embryos produced in presence of 3D-printed scaffolds produced via extrusion exhibit the highest similarity with the control embryos considering cleavage, blastocyst rates, TCN, ICN/TE and ACR per embryo. Conversely, all the photo-cross linkable materials or medium conditioned by PLA, lead to the highest dissimilarities. Since the use of PCL scaffolds, as well as its conditioned medium, bring to embryos that are more similar to the control group. Our results suggest that extrusion-based 3D printing of PCL could be the best option to be used for new IVF devices, possibly including the support of OECs, to enhance bovine embryo development

    Heat-Driven Iontronic Nanotransistors

    Get PDF
    Thermoelectric polyelectrolytes are emerging as ideal material platform for self-powered bio-compatible electronic devices and sensors. However, despite the nanoscale nature of the ionic thermodiffusion processes underlying thermoelectric efficiency boost in polyelectrolytes, to date no evidence for direct probing of ionic diffusion on its relevant length and time scale has been reported. This gap is bridged by developing heat-driven hybrid nanotransistors based on InAs nanowires embedded in thermally biased Na+-functionalized (poly)ethyleneoxide, where the semiconducting nanostructure acts as a nanoscale probe sensitive to the local arrangement of the ionic species. The impact of ionic thermoelectric gating on the nanodevice electrical response is addressed, investigating the effect of device architecture, bias configuration and frequency of the heat stimulus, and inferring optimal conditions for the heat-driven nanotransistor operation. Microscopic quantities of the polyelectrolyte such as the ionic diffusion coefficient are extracted from the analysis of hysteretic behaviors rising in the nanodevices. The reported experimental platform enables simultaneously the ionic thermodiffusion and nanoscale resolution, providing a framework for direct estimation of polyelectrolytes microscopic parameters. This may open new routes for heat-driven nanoelectronic applications and boost the rational design of next-generation polymer-based thermoelectric materials

    Thermally-driven electrical response in single nanowire devices enabled by polyelectrolytes

    No full text
    Thermally-driven field-effect control of a nanowire (NW)-based device is achieved by exploiting thermodiffusion phenomena (Soret effect) in a droplet of electrolyte coupled to the NW, taking advantage of the electric double-layer (EDL) forming at the interface between the electrolyte and the NW. Device operation as EDL NW field-effect transistor is preliminary reported. Thermally-driven modulation of the electronic transport in the NW device is observed, characterized in its full parameter space at 300 K and qualitatively rationalized

    Profiling of mitochondrial heteroplasmy in single human oocytes by next-generation sequencing

    No full text
    Mitochondrial DNA (mtDNA) plays a crucial role in the development of a competent oocyte. Indeed, mtDNA alterations may predispose to chromosome nondisjunction, resulting in infertility due to a reduced vitality and quality of oocytes and embryos. In this methods paper, the multiple displacement amplification approach was applied in combination with next-generation sequencing (NGS) to amplify and sequence, in single-end, the entire mtDNA of single human oocytes to directly construct genomic NGS libraries, and subsequently, to highlight and quantify the mutations they presented. The bioinformatic workflow was carried out with a specific ad hoc developed in-house software. This approach proved to be sensitive and specific, also highlighting the mutations present in heteroplasmy, showing deletion, insertion or substitution mutations in the genes involved in the respiratory chain, even if the found variants were benign or of uncertain meaning. The analysis of mtDNA mutations in the oocyte could provide a better understanding of specific genetic abnormalities and of their possible effect on oocyte developmental competence. This study shows how this approach, based on a massive parallel sequencing of clonally amplified DNA molecules, allows to sequence the entire mitochondrial genome of single oocytes in a short time and with a single analytical run and to verify mtDNA mutations

    Pre-Treatment of Swine Oviductal Epithelial Cells with Progesterone Increases the Sperm Fertilizing Ability in an IVF Model

    Get PDF
    Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells' doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems

    CD200 as a Potential New Player in Inflammation during Rotator Cuff Tendon Injury/Repair: An In Vitro Model

    No full text
    Rotator cuff tendon (RCT) disease results from multifactorial mechanisms, in which inflammation plays a key role. Pro-inflammatory cytokines and tendon stem cell/progenitor cells (TSPCs) have been shown to participate in the inflammatory response. However, the underlying molecular mechanism is still not clear. In this study, flow cytometry analyses of different subpopulations of RCT-derived TSPCs demonstrate that after three days of administration, TNFα alone or in combination with IFNγ significantly decreases the percentage of CD146+CD49d+ and CD146+CD49f+ but not CD146+CD109+ TSPCs populations. In parallel, the same pro-inflammatory cytokines upregulate the expression of CD200 in the CD146+ TSPCs population. Additionally, the TNFα/IFNγ combination modulates the protein expression of STAT1, STAT3, and MMP9, but not fibromodulin. At the gene level, IRF1, CAAT (CAAT/EBPbeta), and DOK2 but not NF-κb, TGRF2 (TGFBR2), and RAS-GAP are modulated. In conclusion, although our study has several important limitations, the results highlight a new potential role of CD200 in regulating inflammation during tendon injuries. In addition, the genes analyzed here might be new potential players in the inflammatory response of TSPCs

    An interactive analysis of the mouse oviductal miRNA profiles

    No full text
    MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction
    • …
    corecore