176 research outputs found

    Calretinin distribution in the octopus brain: an immunohistochemical and in situ hybridization histochemical analysis

    Get PDF
    The distribution of calretinin containing neurons examined by in situ hybridization mapping was compared with that obtained by immunocytochemistry in the brain of octopus. Results revealed a close correspondence between the two types of investigations. Western blot analysis disclosed a 29 kDa protein immunostained with anti-calretinin antibody. Calretinin containing neurons were localized mainly in the cortex of octopus lobes, including the vertical, frontal, basal, buccal, palliovisceral, pedal and branchial, with variations of staining intensity and density of immunoreactive cells. The amacrine cells surrounding calretinin containing neuronal bodies of the cortex were also labeled unlike the glial cells. The close correspondence of blotting analysis, immunocytochemistry and in situ hybridization indicates with no doubt that calretinin, like other calcium-binding proteins previously studied, is also present in the nervous system of cephalopods. Furthermore, although recent findings localize calretinin also in endocrine glands, the presence of this calcium-binding protein in the brain of octopus indicates that calretinin appeared early in the phylogeny as a neuronal protein already in invertebrates

    A Review of the Literature on Corruption in Healthcare Organizations

    Get PDF
    This paper provides a systematic and bibliometric review of 80 research articles on corruption in healthcare published in peer-reviewed journals between 2006 and 2017. Findings suggest that the number of studies has increased over time with a focus on low- and middle-income countries; academic researchers have published papers in a large variety of journals and have investigated different types of corruption with various methodologies. The interest is especially focused on low- and middle-income countries where corrupt behaviors are more common. The paper suggests future research directions to a dynamic research community to facilitate anticorruption actions by public authorities

    Analysis of Catania Flash Flood Case Study by Using Combined Microwave and Infrared Technique

    Get PDF
    Abstract In this paper, the analysis of an extreme convective event atypical for the winter season, which occurred on 21 February 2013 on the east coast of Sicily and caused a flash flood over Catania, is presented. In just 1 h, more than 50 mm of precipitation was recorded, but it was not forecast by numerical weather prediction (NWP) models and, consequently, no severe weather warnings were sent to the population. The case study proposed is first examined with respect to the synoptic situation and then analyzed by means of two algorithms based on satellite observations: the Cloud Mask Coupling of Statistical and Physical Methods (MACSP) and the Precipitation Evolving Technique (PET), developed at the National Research Council of Italy. Both of the algorithms show their ability in the near-real-time monitoring of convective cell formation and their rapid evolution. As quantitative precipitation forecasts by NWP could fail, especially for atypical convective events like in Catania, tools like MACSP and PET shall be adopted by civil protection centers to monitor the real-time evolution of deep convection events in aid to the severe weather warning service

    Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D Monolayers with 3D Organoid Cultures

    Get PDF
    SUMMARY Organoids (ORGs) are increasingly used as models of cerebral cortical development. Here, we compared transcriptome and cellular phenotypes between telencephalic ORGs and monolayers (MONs) generated in parallel from three biologically distinct induced pluripotent stem cell (iPSC) lines. Multiple readouts revealed increased proliferation in MONs, which was caused by increased integrin signaling. MONs also exhibited altered radial glia (RG) polarity and suppression of Notch signaling, as well as impaired generation of intermediate progenitors, outer RG, and cortical neurons, which were all partially reversed by reaggregation of dissociated cells. Network analyses revealed co-clustering of cell adhesion, Notch-related transcripts and their transcriptional regulators in a module strongly downregulated in MONs. The data suggest that ORGs, with respect to MONs, initiate more efficient Notch signaling in ventricular RG owing to preserved cell adhesion, resulting in subsequent generation of intermediate progenitors and outer RG, in a sequence that recapitulates the cortical ontogenetic process

    Effects of Propionyl-L-Carnitine on Ischemia–Reperfusion Injury in Hamster Cheek Pouch Microcirculation

    Get PDF
    Background and purpose Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia–reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. Methods The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (VRBC) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2′-7′-dichlorofluorescein (DCF), respectively. Results In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and VRBC decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. Conclusions pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase

    Differentiation of Human iPSCs Into Telencephalic Neurons Using 3D Organoids and Monolayer Culture

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) are emerging as a useful tool for modelling in vitro early brain development and neurological disorders. Molecular mechanisms and cell interactions that regulate the neurodevelopment at early stages remain unclear because of human brain’s complexity and limitations of functional studies. Two major culture methodologies are used to differentiate in vitro hiPSCs into neurons: monolayer (2D) and organoid (3D) cultures. Here we investigate the effect of cell dissociation and the loss of 3D organization during the early differentiation process of neuronal progenitors. Using the same culture media, we first differentiated hiPSCs into neural progenitor cells (NPCs) and then induced their differentiation into neurons in 3 different modalities: 3D undissociated organoids, dissociated NPCs followed by immediate re-aggregation into an organoid, and dissociated NPCs cultured as monolayer. We assessed neuronal differentiation efficiency of each method by immunocytochemistry, qPCR, western blot, and RNA-Seq analysis over a time course. Our data revealed substantial differences in gene and protein expression among the three systems, including genes of the Notch pathway (e.g. NEUROD1, NEUROG2), earliest determinants of cortical region differentiation (e.g. SOX1, FEZF1) as well as later transcriptional regulators that specify cortical neuron subtypes (e.g. TBR1, CTIP2), which were all downregulated in monolayer. Moreover, we found that genes and pathways mediating cell-to-cell interactions (e.g. CNTNs, CAMs) were mostly upregulated in the 3D culture systems, whereas cell-extracellular matrix interaction molecules (e.g. ITG, LAM) were mostly upregulated in 2D, indicating that cell surface molecules may be involved in specification of neuronal cell types. Our results address the methodological question of the appropriateness of a differentiation method for a particular experimental goal, and, beyond that, reveal important early determinants that exert a decisive influence on neuronal differentiation and regional specification of human neural stem cells.

    Secreted Gal-3BP is a novel promising target for non-internalizing Antibody–Drug Conjugates

    Get PDF
    Abstract Galectin-3-binding protein (Gal-3BP) has been identified as a cancer and metastasis-associated, secreted protein that is expressed by the large majority of cancers. The present study describes a special type of non-internalizing antibody-drug-conjugates that specifically target Gal-3BP. Here, we show that the humanized 1959 antibody, which specifically recognizes secreted Gal-3BP, selectively localized around tumor but not normal cells. A site specific disulfide linkage with thiol-maytansinoids to unpaired cysteine residues of 1959, resulting in a drug-antibody ratio of 2, yielded an ADC product, which cured A375m melanoma bearing mice. ADC products based on the non-internalizing 1959 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed and secreted by several cancers, while being present at low levels in most normal adult tissues

    Humoral and cellular immune response elicited by mRNA vaccination against SARS-CoV-2 in people living with HIV (PLWH) receiving antiretroviral therapy (ART) according with current CD4 T-lymphocyte count

    Get PDF
    BACKGROUND: Data on SARS-CoV-2 vaccine immunogenicity in PLWH are currently limited. Aim of the study was to investigate immunogenicity according to current CD4 T-cell count. METHODS: PLWH on ART attending a SARS-CoV-2 vaccination program, were included in a prospective immunogenicity evaluation after receiving BNT162b2 or mRNA-1273. Participants were stratified by current CD4 T-cell count (poor CD4 recovery, PCDR: 500/mm^{3}). RBD-binding IgG, SARS-CoV-2 neutralizing antibodies (nAbs) and IFN-γ release were measured. As control group, HIV-negative healthcare workers (HCWs) were used. FINDINGS: Among 166 PLWH after 1 month from the second dose, detectable RBD-binding IgG were elicited in 86.7% of PCDR, 100% of ICDR, 98.7% of HCDR, and a neutralizing titre ≥1:10 elicited in 70.0%, 88.2% and 93.1%, respectively. Compared to HCDR, all immune response parameters were significantly lower in PCDR. After adjusting for confounders, current CD4 T-cell 500 cell/mm^{3} and HIV-negative controls. A decreased RBD-binding antibody response than HCWs was also observed in PLWH with CD4 T-cell 200-500/mm^{3}, whereas immune response elicited in PLWH with a CD4 T-cell >500/mm^{}3 was comparable to HIV-negative population

    Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells.

    Get PDF
    Microbial products, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4), regulate the lifespan of dendritic cells (DCs) by largely undefined mechanisms. Here, we identify a role for calcium-calmodulin–dependent kinase IV (CaMKIV) in this survival program. The pharmacologic inhibition of CaMKs as well as ectopic expression of kinase-inactive CaMKIV decrease the viability of monocyte-derived DCs exposed to bacterial LPS. The defect in TLR4 signaling includes a failure to accumulate the phosphorylated form of the cAMP response element-binding protein (pCREB), Bcl-2, and Bcl-xL. CaMKIV null mice have a decreased number of DCs in lymphoid tissues and fail to accumulate mature DCs in spleen on in vivo exposure to LPS. Although isolated Camk4(−/−) DCs are able to acquire the phenotype typical of mature cells and release normal amounts of cytokines in response to LPS, they fail to accumulate pCREB, Bcl-2, and Bcl-xL and therefore do not survive. The transgenic expression of Bcl-2 in CaMKIV null mice results in full recovery of DC survival in response to LPS. These results reveal a novel link between TLR4 and a calcium-dependent signaling cascade comprising CaMKIV-CREB-Bcl-2 that is essential for DC survival
    • …
    corecore