794 research outputs found

    First measurement of the neutron-emission probability with a surrogate reaction in inverse kinematics at a heavy-ion storage ring

    No full text
    International audienceNeutron-induced reaction cross sections of short-lived nuclei are imperative to understand the origin of heavy elements in stellar nucleosynthesis and for societal applications, but their measurement is extremely complicated due to the radioactivity of the targets involved. One way of overcoming this issue is to combine surrogate reactions with the unique possibilities offered by heavy-ion storage rings. In this work, we describe the first surrogate-reaction experiment in inverse kinematics, which we successfully conducted at the Experimental Storage Ring (ESR) of the GSI/FAIR facility, using the 208^{208}Pb(p,p') reaction as a surrogate for neutron capture on 207^{207}Pb. Thanks to the outstanding detection efficiencies possible at the ESR, we were able to measure for the first time the neutron-emission probability as a function of the excitation energy of 208^{208}Pb. We demonstrate the strong connection between this probability and the neutron-induced radiative capture cross section of 207^{207}Pb, and provide reliable results for this cross section at neutron energies for which no experimental data exist

    First measurement of the neutron-emission probability with a surrogate reaction in inverse kinematics at a heavy-ion storage ring

    No full text
    International audienceNeutron-induced reaction cross sections of short-lived nuclei are imperative to understand the origin of heavy elements in stellar nucleosynthesis and for societal applications, but their measurement is extremely complicated due to the radioactivity of the targets involved. One way of overcoming this issue is to combine surrogate reactions with the unique possibilities offered by heavy-ion storage rings. In this work, we describe the first surrogate-reaction experiment in inverse kinematics, which we successfully conducted at the Experimental Storage Ring (ESR) of the GSI/FAIR facility, using the 208^{208}Pb(p,p') reaction as a surrogate for neutron capture on 207^{207}Pb. Thanks to the outstanding detection efficiencies possible at the ESR, we were able to measure for the first time the neutron-emission probability as a function of the excitation energy of 208^{208}Pb. We demonstrate the strong connection between this probability and the neutron-induced radiative capture cross section of 207^{207}Pb, and provide reliable results for this cross section at neutron energies for which no experimental data exist

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    No full text
    This article presents a few selected developments and future ideas related to the measurement of (n, Îł) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with Îł-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.European Research Council 681740Ministerio de Ciencia e InnovaciĂłn PID2019- 104714GBC21, FPA2017-83946-C2-1-P, FIS2015-71688-ERC, FPA2016-77689-C2-1-R, RTI2018-098117-B-C21CSIC PIE201750I26SANDA H2020-84755

    High-spin states in 212Po above the α-decaying (18+) isomer

    Get PDF
    The nucleus Po has been produced through the fragmentation of a U primary beam at 1 GeV/nucleon at GSI, separated with the FRagment Separator, FRS, and studied via isomer Îł-decay spectroscopy with the RISING setup. Two delayed previously unknown Îł rays have been observed. One has been attributed to the E3 decay of a 21 isomeric state feeding the α-emitting 45-s (18) high-spin isomer. The other Îł-ray line has been assigned to the decay of a higher-lying 23 metastable state. These are the first observations of high-spin states above the Po (18) isomer, by virtue of the selectivity obtained via ion-by-ion identification of U fragmentation products. Comparison with shell-model calculations points to shortfalls in the nuclear interactions involving high-j proton and neutron orbitals, to which the region around Z∌100 is sensitive.This work was partially supported by the Ministry of Science, and Generalitat Valenciana, Spain, under the Grants SEV-2014-0398, FPA2017-84756-C4, PID2019-104714GB-C21, PROMETEO/2019/005 and by the EU FEDER funds. The support of the UK STFC, of the Swedish Research Council under Contract No. 2008-4240 and No. 2016-3969 and of the DFG (EXC 153) is also acknowledged. The experimental activity has been partially supported by the EU under the FP6-Integrated Infras-tructure Initiative EURONS, Contract No. RII3-CT-2004-506065 and FP7-Integrated Infrastructure Initiative ENSAR, Grant No. 262010

    New detection systems for an enhanced sensitivity in key stellar (n,Îł) measurements

    No full text
    Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (∌mg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,Îł) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,Îł) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,Îł).Title in Web of Science: New detection systems for an enhanced sensitivity in key stellar (n,gamma) measurements</p

    Epidemiology of ataxia and hereditary spastic paraplegia in Spain: A cross-sectional study

    No full text
    Introduction: Ataxia and hereditary spastic paraplegia are rare neurodegenerative syndromes. We aimed to determine the prevalence of these disorders in Spain in 2019. Patients and methods: We conducted a cross-sectional, multicentre, retrospective, descriptive study of patients with ataxia and hereditary spastic paraplegia in Spain between March 2018 and December 2019. Results: We gathered data from a total of 1933 patients from 11 autonomous communities, provided by 47 neurologists or geneticists. Mean (SD) age in our sample was 53.64 (20.51) years; 938 patients were men (48.5%) and 995 were women (51.5%). The genetic defect was unidentified in 920 patients (47.6%). A total of 1371 patients (70.9%) had ataxia and 562 (29.1%) had hereditary spastic paraplegia. Prevalence rates for ataxia and hereditary spastic paraplegia were estimated at 5.48 and 2.24 cases per 100 000 population, respectively. The most frequent type of dominant ataxia in our sample was SCA3, and the most frequent recessive ataxia was Friedreich ataxia. The most frequent type of dominant hereditary spastic paraplegia in our sample was SPG4, and the most frequent recessive type was SPG7. Conclusions: In our sample, the estimated prevalence of ataxia and hereditary spastic paraplegia was 7.73 cases per 100 000 population. This rate is similar to those reported for other countries. Genetic diagnosis was not available in 47.6% of cases. Despite these limitations, our study provides useful data for estimating the necessary healthcare resources for these patients, raising awareness of these diseases, determining the most frequent causal mutations for local screening programmes, and promoting the development of clinical trialsFunding: The results of our study were partially presented at the 2017 and 2018 Annual Meetings of the Spanish Society of Neurology. Our study was partially funded by a grant from the Spanish Society of Neurology awarded to the lead author (Dr Gloria Ortega Suero), who was responsible for the database and data custody

    High resolution

    No full text
    Neutron capture cross section measurements of isotopes close to s-process branching-points are of fundamental importance for the understanding of this nucleosynthesis mechanism through which about 50% of the elements heavier than iron are produced. We present in this contribution the results corresponding to the high resolution measurement, for first time ever, of the 80Se(n, Îł) cross section, in which 98 resonances never measured before have been reported. As a consequence, ten times more precise values for the MACS have been obtained compared to previous accepted value adopted in the astrophysical KADoNiS data base

    The neutron time-of-flight facility n TOF at CERN. Recent facility upgrades and detector developments

    Get PDF
    Part of this work has been carried out in the framework of a project funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator Grant project HYMNS, with grant agreement No. 681740). The authors acknowledge support from the Spanish Ministerio de Ciencia e Innovaci®on under grants PID2019-104714GB-C21, FPA2017-83946-C2-1-P and FIS2015-71688-ERC. In line with the principles that apply to scientific publishing and the CERN policy in matters of scientific publications, the n TOF Collaboration recognises the work of V. Furman and Y. Kopatch (JINR, Russia), who have contributed to the experiment used to obtain the results described in this paper.Based on an idea by Carlo Rubbia, the n_TOF facility at CERN has been operating for over 20 years. It is a neutron spallation source, driven by the 20 GeV/c proton beam from the CERN PS accelerator. Neutrons in a very wide energy range (from GeV, down to sub-eV kinetic energy) are generated by a massive Lead spallation target feeding two experimental areas. EAR1, horizonal with respect to the proton beam direction is set at 185 meters from the spallation target. EAR2, on the vertical line from the spallation source, is placed at 20 m. Neutron energies for experiments are selected by the time-of-flight technique (hence the name n_TOF), while the long flight paths ensure a very good energy resolution. Over one hundred experiments have been performed by the n_TOF Collaboration at CERN, with applications ranging from nuclear astrophysics (synthesis of the heavy elements in stars, big bang nucleosynthesis, nuclear cosmo-chronology), to advanced nuclear technologies (nuclear data for applications, nuclear safety), as well as for basic nuclear science (reaction mechanisms, structure and decay of highly excited compound states). During the planned shutdown of the CERN accelerator complex between 2019 and 2021, the facility went through a substantial upgrade with a new target-moderator assembly, refurbishing of the neutron beam lines and experimental areas. An additional measuring and irradiation station (the NEAR Station) has been envisaged and its capabilities for performing material test studies and new physics opportunities are presently explored. An overview of the facility and of the activities performed at CERN is presented in this contribution, with a particular emphasis on the most relevant experiments for nuclear astrophysics.European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator Grant project HYMNS, with grant agreement No. 681740)Spanish Ministerio de Ciencia e Innovación under grants PID2019-104714GB-C21, FPA2017-83946-C2-1-P and FIS2015-71688-ERC

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)

    Measurement of the 77Se(n,Îł)^{77}Se ( n , Îł ) cross section up to 200 keV at the n_TOF facility at CERN

    Get PDF
    The 77Se(n,γ)^{77}Se ( n , γ ) reaction is of importance for 77Se^{77}Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se^{77}Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT=5 keVkT=5 \space keV and kT=100 keVkT=100\space keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se^{77}Se abundances produced through the slow neutron capture process in selected stellar models of 15M⊙15M⊙ and 2M⊙2M⊙, respectively, compared to using previous recommendation of the cross section
    • 

    corecore