1,576 research outputs found

    Fiscal transformation and political compliance: England, 1550-1700

    Get PDF

    Increasing Mental Health Resource Access During the COVID-19 Pandemic

    Get PDF
    https://scholarworks.uvm.edu/fmclerk/1848/thumbnail.jp

    'We don't go to the casino but we're the biggest gamblers in the world': drivers of change in the Mt Magnet and Upper Gascoyne regions

    Get PDF
    This thesis examines the complex environmental, social, economic and political challenges surrounding sustainable land use of rangelands by European leaseholders in Western Australia. A study of historical, socio-economic and technological events, combined with the development of social values and policy, exposed a broad suite of factors that shaped pastoralism and grazing, and continues to influence development in these regions today. The thesis also explained how the emergence of the sustainable development paradigm is raising awareness of the ways societies define the issues of development, and the influence of this paradigm on attempts to shape change. Extensive changes in animal production systems have been made in response to complex factors driving change in pastoralism and grazing in recent years. In the Upper Gascoyne, the change to cattle has resulted in extensive changes in infrastructure and raised new hopes for viable production systems in the future. Station amalgamation or sale of stations to Government Departments have been key factors of change in this region. In the Mt Magnet region, wool production remains dominant. However severe drought conditions and declining wool prices are increasingly forcing change to production of feral goats or Damara sheep. Increasing conflict in the rangelands centred around competing claims to land and its use, against a backdrop of dry seasons and changing socio-economics, are escalating leaseholders' fears and concerns about growing community demands for multiple rangeland use. Government approaches now focus on multiple use of rangelands, providing incentives or opportunities to develop alternative methods of use for rangeland resources. However, environmental barriers to sustainable land use and diverse perceptions of sustainability continue to create difficulties for developing effective policies and strategies for change. There is now an urgent need for a paradigm shift in attitudes towards rangelands that promotes more sustainable uses for the land, a greater equality in sharing resources and constructive integration of the values of all rangeland stakeholders

    Visual control of action in step descent

    Get PDF
    Visual guidance of forwards, sideways, and upwards stepping has been investigated, but there is little knowledge about the visuomotor processes underlying stepping down actions. In this study we investigated the visual control of a single vertical step. We measured which aspects of the stepping down movement scaled with visual information about step height, and how this visual control varied with binocular versus monocular vision. Subjects stepped down a single step of variable and unpredictable height. Several kinematic measures were extracted including a new measure, “kneedrop”. This describes a transition in the movement of the lower leg, which occurs at a point proportional to step height. In a within-subjects design, measurements were made with either full vision, monocular vision, or no vision. Subjects scaled kneedrop relative to step height with vision, but this scaling was significantly impaired in monocular and no vision conditions. The study establishes a kinematic marker of visually controlled scaling in single-step locomotion which will allow further study of the visuomotor control processes involved in stepping dow

    Visually guided step descent in children with Williams Syndrome

    Get PDF
    Individuals with Williams syndrome (WS) have impairments in visuospatial tasks and in manual visuomotor control, consistent with parietal and cerebellar abnormalities. Here we examined whether individuals with WS also have difficulties in visually controlling whole-body movements. We investigated visual control of stepping down at a change of level in children with WS (5–16-year-olds), who descended a single step while their movement was kinematically recorded. On each trial step height was set unpredictably, so that visual information was necessary to perceive the step depth and position the legs appropriately before landing. Kinematic measures established that children with WS did not use visual information to slow the leg at an appropriate point during the step. This pattern contrasts with that observed in typically developing 3- and 4-year-old children, implying severe impairment in whole-body visuomotor control in WS. For children with WS, performance was not significantly predicted by low-level visual or balance problems, but improved significantly with verbal age. The results suggest some plasticity and development in WS whole-body control. These data clearly show that visuospatial and visuomotor deficits in WS extend to the locomotor domain. Taken together with evidence for parietal and cerebellar abnormalities in WS, these results also provide new evidence for the role of these circuits in the visual control of whole-body movement

    Perceptual grouping ability in Williams syndrome: Evidence for deviant patterns of performance

    Get PDF
    Williams syndrome (WS) is a rare genetic disorder. At a cognitive level, this population display poor visuo-spatial cognition when compared to verbal ability. Within the visuo-spatial domain, it is now accepted that individuals with WS are able to perceive both local and global aspects of an image, albeit at a low level. The present study examines the manner in which local elements are grouped into a global whole in WS. Fifteen individuals with WS and 15 typically developing controls, matched for non-verbal ability, were presented with a matrix of local elements and asked whether these elements were perceptually grouped horizontally or vertically. The WS group were at the same level as the control group when grouping by luminance, closure, and alignment. However, their ability to group by shape, orientation and proximity was significantly poorer than controls. This unusual profile of grouping abilities in WS suggests that these individuals do not form a global percept in a typical manner

    Differential human brain activation by vertical and horizontal global visual textures

    Get PDF
    Mid-level visual processes which integrate local orientation information for the detection of global structure can be investigated using global form stimuli of varying complexity. Several lines of evidence suggest that the identification of concentric and parallel organisations relies on different underlying neural substrates. The current study measured brain activation by concentric, horizontal parallel, and vertical parallel arrays of short line segments, compared to arrays of randomly oriented segments. Six subjects were scanned in a blocked design functional magnetic resonance imaging experiment. We compared percentage BOLD signal change during the concentric, horizontal and vertical blocks within early retinotopic areas, the fusiform face area and the lateral occipital complex. Unexpectedly, we found that vertical and horizontal parallel forms differentially activated visual cortical areas beyond V1, but in general, activations to concentric and parallel forms did not differ. Vertical patterns produced the highest percentage signal change overall and only area V3A showed a significant difference between concentric and parallel (horizontal) stimuli, with the former better activating this area. These data suggest that the difference in brain activation to vertical and horizontal forms arises at intermediate or global levels of visual representation since the differential activity was found in mid-level retinotopic areas V2 and V3 but not in V1. This may explain why earlier studies—using methods that emphasised responses to local orientation—did not discover this vertical-horizontal anisotrop

    Uneven integration for perception and action cues in children’s working memory

    Get PDF
    We examined the development of visual cue integration in a desktop working-memory task using boxes with different visual action cues (opening actions) and perceptual surface cues (colours, monochromatic textures, or images of faces). Children had to recall which box held a hidden toy, based on (a) the action cue, (b) the surface cue, or (c) a conjunction of the two. Results from three experiments show a set of asymmetries in children's integration of action and surface cues. The 18–24-month-olds disregarded colour in conjunction judgements with action; 30–36-month-olds used colour but disregarded texture. Images of faces were not disregarded at either age. We suggest that 18–24-month-olds' disregard of colour, seen previously in reorientation tasks (Hermer & Spelke, 1994), may represent a general phenomenon, likened to uneven integration between the dorsal and ventral streams in early development

    Cortical Processing of Global Form, Motion and Biological Motion Under Low Light Levels

    Get PDF
    Advances in potential treatments for rod and cone dystrophies have increased the need to understand the contributions of rods and cones to higher-level cortical vision. We measured form, motion and biological motion coherence thresholds and EEG steady-state visual evoked potentials (SSVEP) responses under light conditions ranging from photopic to scotopic. Low light increased thresholds for all three kinds of stimuli; however, global form thresholds were relatively more impaired than those for global motion or biological motion. SSVEP responses to coherent global form and motion were reduced in low light, and motion responses showed a shift in topography from the midline to more lateral locations. Contrast sensitivity measures confirmed that basic visual processing was also affected by low light. However, comparison with contrast sensitivity function (CSF) reductions achieved by optical blur indicated that these were insufficient to explain the pattern of results, although the temporal properties of the rod system may also play a role. Overall, mid-level processing in extra-striate areas is differentially affected by light level, in ways that cannot be explained in terms of low-level spatiotemporal sensitivity. A topographical shift in scotopic motion SSVEP responses may reflect either changes to inhibitory feedback mechanisms between V1 and extra-striate regions or a reduction of input to the visual cortex. These results provide insight into how higher-level cortical vision is normally organised in absence of cone input, and provide a basis for comparison with patients with cone dystrophies, before and after treatments aiming to restore cone function
    corecore