22 research outputs found

    Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    Get PDF
    properly cited. Purpose. To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0±11.1 seconds per phase (512×512 resolution) as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865±0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation

    Advances in radiation therapy dosimetry

    No full text
    During the last decade, there has been an explosion of new radiation therapy planning and delivery tools. We went through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments, and additional new techniques for motion-adaptive radiation therapy are being introduced. These advances push the frontiers in our effort to provide better patient care; and with the addition of IMRT, temporal dimensions are major challenges for the radiotherapy patient dosimetry and delivery verification. Advanced techniques are less tolerant to poor implementation than are standard techniques. Mis-administrations are more difficult to detect and can possibly lead to poor outcomes for some patients. Instead of presenting a manual on quality assurance for radiation therapy, this manuscript provides an overview of dosimetry verification tools and a focused discussion on breath holding, respiratory gating and the applications of four-dimensional computed tomography in motion management. Some of the major challenges in the above areas are discussed
    corecore