425 research outputs found

    Ubiquitin-dependent Degradation of p73 Is Inhibited by PML

    Get PDF
    p73 has been identified recently as a structural and functional homologue of the tumor suppressor p53. Here, we report that p73 stability is directly regulated by the ubiquitin–proteasome pathway. Furthermore, we show that the promyelocytic leukemia (PML) protein modulates p73 half-life by inhibiting its degradation in a PML–nuclear body (NB)–dependent manner. p38 mitogen-activated protein kinase–mediated phosphorylation of p73 is required for p73 recruitment into the PML-NB and subsequent PML-dependent p73 stabilization. We find that p300-mediated acetylation of p73 protects it against ubiquitinylation and that PML regulates p73 stability by positively modulating its acetylation levels. As a result, PML potentiates p73 transcriptional and proapoptotic activities that are markedly impaired in Pml−/− primary cells. Our findings demonstrate that PML plays a crucial role in modulating p73 function, thus providing further insights on the molecular network for tumor suppression

    TAp73 promotes anabolism

    Get PDF
    Metabolic adaptation has emerged as a hallmark of cancer and a promising therapeutic target, as rapidly proliferating cancer cells adapt their metabolism increasing nutrient uptake and reorganizing metabolic fluxes to support biosynthesis. The transcription factor p73 belongs to the p53-family and regulates tumorigenesis via its two N-terminal isoforms, with (TAp73) or without (ΔNp73) a transactivation domain. TAp73 acts as tumor suppressor, at least partially through induction of cell cycle arrest and apoptosis and through regulation of genomic stability. Here, we sought to investigate whether TAp73 also affects metabolic profiling of cancer cells. Using high throughput metabolomics, we unveil a thorough and unexpected role for TAp73 in promoting Warburg effect and cellular metabolism. TAp73-expressing cells show increased rate of glycolysis, higher amino acid uptake and increased levels and biosynthesis of acetyl-CoA. Moreover, we report an extensive TAp73-mediated upregulation of several anabolic pathways including polyamine and synthesis of membrane phospholipids. TAp73 expression also increases cellular methyl-donor S-adenosylmethionine (SAM), possibly influencing methylation and epigenetics, and promotes arginine metabolism, suggestive of a role in extracellular matrix (ECM) modeling. In summary, our data indicate that TAp73 regulates multiple metabolic pathways that impinge on numerous cellular functions, but that, overall, converge to sustain cell growth and proliferation

    A primary luminal/HER2 negative breast cancer patient with mismatch repair deficiency

    Get PDF
    : Here, we present the case of a 47-year-old woman diagnosed with luminal B breast cancer subtype and provide an in-depth analysis of her gene mutations, chromosomal alterations, mRNA and protein expression changes. We found a point mutation in the FGFR2 gene, which is potentially hyper-activating the receptor function, along with over-expression of its ligand FGF20 due to genomic amplification. The patient also harbors somatic and germline mutations in some mismatch repair (MMR) genes, with a strong MMR mutational signature. The patient displays high microsatellite instability (MSI) and tumor mutational burden (TMB) status and increased levels of CTLA-4 and PD-1 expression. Altogether, these data strongly implicate that aberrant FGFR signaling, and defective MMR system might be involved in the development of this breast tumor. In addition, high MSI and TMB in the context of CTLA-4 and PD-L1 positivity, suggest the potential benefit of immune checkpoint inhibitors. Accurate characterization of molecular subtypes, based on gene mutational and expression profiling analyses, will be certainly helpful for individualized treatment and targeted therapy of breast cancer patients, especially for those subtypes with adverse outcome

    A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient

    Get PDF
    : Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads

    Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies

    Get PDF
    Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments

    Macrophage polarization and metabolism in atherosclerosis

    Get PDF
    : Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. these plaques restrict blood flow and lead to complications such as heart attack or stroke. the development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. the metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages

    hUbiquitome: a database of experimentally verified ubiquitination cascades in humans

    Get PDF
    Protein ubiquitination is an evolutionarily conserved and functionally diverse post-translational modification achieved through the sequential action of E1-activating enzymes, E2-conjugating enzymes and E3 ligases. A summary of validated ubiquitination substrates have been presented and a prediction of new substrates have been conducted in yeast. However, a systematic summary of human ubiquitination substrates containing experimental evidence and the enzymatic cascade of each substrate is not available. In the present study, hUbiquitome web resource is introduced, a public resource for the retrieval of experimentally verified human ubiquitination enzymes and substrates. hUbiquitome is the first comprehensive database of human ubiquitination cascades. Currently, hUbiquitome has in its repertoire curated data comprising 1 E1 enzyme, 12 E2 enzymes, 138 E3 ligases or complexes, 279 different substrate proteins and 17 deubiquitination enzyme terms. The biological functions of substrates from different kinds of E3s were analyzed using the collected data. The findings show that substrates ubiquitinated by RING (Really Interesting New Gene) E3s are enriched most in apoptosis-related processes, whereas substrates ubiquitinated by other E3s are enriched in gene expression-associated processes. An analysis of the data demonstrates the biological process preferences of the different kinds of E3s. hUbiquitome is the first database to systematically collect experimentally validated ubiquitinated proteins and related ubiquitination cascade enzymes which might be helpful in the field of ubiquitination-modification research

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Novel HBsAg markers tightly correlate with occult HBV infection and strongly affect HBsAg detection.

    Get PDF
    Occult HBV infection (OBI) is a threat for the safety of blood-supply, and has been associated with the onset of HBV-related hepatocellular carcinoma and lymphomagenesis. Nevertheless, genetic markers in HBsAg (particularly in D-genotype, the most common in Europe) significantly associated with OBI in vivo are missing. Thus, the goal of this study is to define: (i) prevalence and clinical profile of OBI among blood-donors; (ii) HBsAg-mutations associated with OBI; (iii) their impact on HBsAg-detection. OBI was searched among 422,278 blood-donors screened by Nucleic-Acid-Testing. Following Taormina-OBI-definition, 26 (0.006%) OBI-patients were identified. Despite viremia <50IU/ml, HBsAg-sequences were obtained for 25/26 patients (24/25 genotype-D). OBI-associated mutations were identified by comparing OBI-HBsAg with that of 82 chronically-infected (genotype-D) patients as control. Twenty HBsAg-mutations significantly correlated for the first time with OBI. By structural analysis, they localized in the major HBV B-cell-epitope, and in HBsAg-capsid interaction region. 14/24 OBI-patients (58.8%) carried in median 3 such mutations (IQR:2.0-6.0) against 0 in chronically-infected patients. By co-variation analysis, correlations were observed for R122P+S167L (phi=0.68, P=0.01), T116N+S143L (phi=0.53, P=0.03), and Y100S+S143L (phi=0.67, p<0.001). Mutants (obtained by site-directed mutagenesis) carrying T116N, T116N+S143L, R122P, R122P+Q101R, or R122P+S167L strongly decreased HBsAg-reactivity (54.9±22.6S/CO, 31.2±12.0S/CO, 6.1±2.4S/CO, 3.0±1.0S/CO and 3.9±1.3S/CO, respectively) compared to wild-type (306.8±64.1S/CO). Even more, Y100S and Y100S+S143L supernatants show no detectable-HBsAg (experiments in quadruplicate). In conclusions, unique HBsAg-mutations in genotype-D, different than those described in genotypes B/C (rarely found in western countries), tightly correlate with OBI, and strongly affect HBsAg-detection. By altering HBV-antigenicity and/or viral-particle maturation, they may affect full-reliability of universal diagnostic-assays for HBsAg-detection
    corecore