939 research outputs found

    The Steep Nekhoroshev's Theorem

    Full text link
    Revising Nekhoroshev's geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev's theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be 1/(2nα1αn21/ (2n \alpha_1\cdots\alpha_{n-2}) (αi\alpha_i's being Nekhoroshev's steepness indices and n3n\ge 3 the number of degrees of freedom)

    The Gallavotti-Cohen Fluctuation Theorem for a non-chaotic model

    Full text link
    We test the applicability of the Gallavotti-Cohen fluctuation formula on a nonequilibrium version of the periodic Ehrenfest wind-tree model. This is a one-particle system whose dynamics is rather complex (e.g. it appears to be diffusive at equilibrium), but its Lyapunov exponents are nonpositive. For small applied field, the system exhibits a very long transient, during which the dynamics is roughly chaotic, followed by asymptotic collapse on a periodic orbit. During the transient, the dynamics is diffusive, and the fluctuations of the current are found to be in agreement with the fluctuation formula, despite the lack of real hyperbolicity. These results also constitute an example which manifests the difference between the fluctuation formula and the Evans-Searles identity.Comment: 12 pages, submitted to Journal of Statistical Physic

    A rigorous implementation of the Jeans--Landau--Teller approximation

    Full text link
    Rigorous bounds on the rate of energy exchanges between vibrational and translational degrees of freedom are established in simple classical models of diatomic molecules. The results are in agreement with an elementary approximation introduced by Landau and Teller. The method is perturbative theory ``beyond all orders'', with diagrammatic techniques (tree expansions) to organize and manipulate terms, and look for compensations, like in recent studies on KAM theorem homoclinic splitting.Comment: 23 pages, postscrip

    The nonequilibrium Ehrenfest gas: a chaotic model with flat obstacles?

    Full text link
    It is known that the non-equilibrium version of the Lorentz gas (a billiard with dispersing obstacles, electric field and Gaussian thermostat) is hyperbolic if the field is small. Differently the hyperbolicity of the non-equilibrium Ehrenfest gas constitutes an open problem, since its obstacles are rhombi and the techniques so far developed rely on the dispersing nature of the obstacles. We have developed analytical and numerical investigations which support the idea that this model of transport of matter has both chaotic (positive Lyapunov exponent) and non-chaotic steady states with a quite peculiar sensitive dependence on the field and on the geometry, not observed before. The associated transport behaviour is correspondingly highly irregular, with features whose understanding is of both theoretical and technological interest

    Effective stability of the Trojan asteroids

    Get PDF
    We study the spatial circular restricted problem of three bodies in the light of Nekhoroshev theory of stability over large time intervals. We consider in particular the Sun-Jupiter model and the Trojan asteroids in the neighborhood of the Lagrangian point L4L_4. We find a region of effective stability around the point L4L_4 such that if the initial point of an orbit is inside this region the orbit is confined in a slightly larger neighborhood of the equilibrium (in phase space) for a very long time interval. By combining analytical methods and numerical approximations we are able to prove that stability over the age of the universe is guaranteed on a realistic region, big enough to include one real asteroid. By comparing this result with the one obtained for the planar problem we see that the regions of stability in the two cases are of the same magnitude.Comment: 9 pages, 2 figures, Astronomy & Astrophysics in pres

    Stability of Simple Periodic Orbits and Chaos in a Fermi -- Pasta -- Ulam Lattice

    Full text link
    We investigate the connection between local and global dynamics in the Fermi -- Pasta -- Ulam (FPU) β\beta -- model from the point of view of stability of its simplest periodic orbits (SPOs). In particular, we show that there is a relatively high qq mode (q=2(N+1)/3)(q=2(N+1)/{3}) of the linear lattice, having one particle fixed every two oppositely moving ones (called SPO2 here), which can be exactly continued to the nonlinear case for N=5+3m,m=0,1,2,...N=5+3m, m=0,1,2,... and whose first destabilization, E2uE_{2u}, as the energy (or β\beta) increases for {\it any} fixed NN, practically {\it coincides} with the onset of a ``weak'' form of chaos preceding the break down of FPU recurrences, as predicted recently in a similar study of the continuation of a very low (q=3q=3) mode of the corresponding linear chain. This energy threshold per particle behaves like E2uNN2\frac{E_{2u}}{N}\propto N^{-2}. We also follow exactly the properties of another SPO (with q=(N+1)/2q=(N+1)/{2}) in which fixed and moving particles are interchanged (called SPO1 here) and which destabilizes at higher energies than SPO2, since E1uNN1\frac{E_{1u}}{N}\propto N^{-1}. We find that, immediately after their first destabilization, these SPOs have different (positive) Lyapunov spectra in their vicinity. However, as the energy increases further (at fixed NN), these spectra converge to {\it the same} exponentially decreasing function, thus providing strong evidence that the chaotic regions around SPO1 and SPO2 have ``merged'' and large scale chaos has spread throughout the lattice.Comment: Physical Review E, 18 pages, 6 figure

    Study of Liapunov Exponents and the Reversibility of Molecular Dynamics Algorithms

    Get PDF
    We study the question of lack of reversibility and the chaotic nature of the equations of motion in numerical simulations of lattice QCD.Comment: latex file with 3 pages, 1 figure. Talk presented at Lattice'96 by C. Li

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Using SAS functions and high resolution isotope data to unravel travel time distributions in headwater catchments

    Get PDF
    Acknowledgments. We are grateful to the European Research Council (ERC) VeWa project (GA335910) and NERC/JIP SIWA project (NE/MO19896/1) for funding. A.R. acknowledges the financial support from the ENAC school at EPFL. C.B. acknowledges support from the University of Costa Rica (project 217-B4-239 and the Isotope Network for Tropical Ecosystem Studies (ISONet)). Data to support this study are provided by the Northern Rivers Institute, University of Aberdeen and are available by the authors. The authors wish to thank Ype van der Velde, Arash Massoudieh, Jean-Raynald de Dreuzy and an anonymous referee for the useful review comments.Peer reviewedPublisher PD

    Boundary effects in the stepwise structure of the Lyapunov spectra for quasi-one-dimensional systems

    Full text link
    Boundary effects in the stepwise structure of the Lyapunov spectra and the corresponding wavelike structure of the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems consisting of many hard-disks. Four kinds of boundary conditions constructed by combinations of periodic boundary conditions and hard-wall boundary conditions are considered, and lead to different stepwise structures of the Lyapunov spectra in each case. We show that a spatial wavelike structure with a time-oscillation appears in the spatial part of the Lyapunov vectors divided by momenta in some steps of the Lyapunov spectra, while a rather stationary wavelike structure appears in the purely spatial part of the Lyapunov vectors corresponding to the other steps. Using these two kinds of wavelike structure we categorize the sequence and the kinds of steps of the Lyapunov spectra in the four different boundary condition cases.Comment: 33 pages, 25 figures including 10 color figures. Manuscript including the figures of better quality is available from http://newt.phys.unsw.edu.au/~gary/step.pd
    corecore