343 research outputs found

    Light Cone Condition for a Thermalized QED Vacuum

    Get PDF
    Within the QED effective action approach, we study the propagation of low-frequency light at finite temperature. Starting from a general effective Lagrangian for slowly varying fields whose structure is solely dictated by Lorentz covariance and gauge invariance, we derive the light cone condition for light propagating in a thermalized QED vacuum. As an application, we calculate the velocity shifts, i.e., refractive indices of the vacuum, induced by thermalized fermions to one loop. We investigate various temperature domains and also include a background magnetic field. While low-temperature effects to one loop are exponentially damped by the electron mass, there exists a maximum velocity shift of ‚ąíőīvmax2=őĪ/(3ŌÄ)-\delta v^2_{max}=\alpha/(3\pi) in the intermediate-temperature domain T‚ąľmT\sim m.Comment: 9 pages, 3 figures, REVTeX, typos corrected, final version to appear in Phys. Rev.

    Decoupling in an expanding universe: boundary RG-flow affects initial conditions for inflation

    Full text link
    We study decoupling in FRW spacetimes, emphasizing a Lagrangian description throughout. To account for the vacuum choice ambiguity in cosmological settings, we introduce an arbitrary boundary action representing the initial conditions. RG flow in these spacetimes naturally affects the boundary interactions. As a consequence the boundary conditions are sensitive to high-energy physics through irrelevant terms in the boundary action. Using scalar field theory as an example, we derive the leading dimension four irrelevant boundary operators. We discuss how the known vacuum choices, e.g. the Bunch-Davies vacuum, appear in the Lagrangian description and square with decoupling. For all choices of boundary conditions encoded by relevant boundary operators, of which the known ones are a subset, backreaction is under control. All, moreover, will generically feel the influence of high-energy physics through irrelevant (dimension four) boundary corrections. Having established a coherent effective field theory framework including the vacuum choice ambiguity, we derive an explicit expression for the power spectrum of inflationary density perturbations including the leading high energy corrections. In accordance with the dimensionality of the leading irrelevant operators, the effect of high energy physics is linearly proportional to the Hubble radius H and the scale of new physics L= 1/M.Comment: LaTeX plus axodraw figures. v2: minor corrections; refs added. JHEP style: 34 pages + 18 pages appendi

    Quaternionic and Octonionic Spinors. A Classification

    Get PDF
    Quaternionic and octonionic realizations of Clifford algebras and spinors are classified and explicitly constructed in terms of recursive formulas. The most general free dynamics in arbitrary signature space-times for both quaternionic and octonionic spinors is presented. In the octonionic case we further provide a systematic list of results and tables expressing, e.g., the relations of the octonionic Clifford algebras with the G2G_2 cosets over the Lorentz algebras, the identities satisfied by the higher-rank antisymmetric octonionic tensors and so on. Applications of these results range from the classification of octonionic generalized supersymmetries, the construction of octonionic superstrings, as well as the investigations concerning the recently discovered octonionic MM-superalgebra and its superconformal extension.Comment: 24 pages, LaTe

    Evidence of Final-State Suppression of High-p_T Hadrons in Au + Au Collisions Using d + Au Measurements at RHIC

    Full text link
    Transverse momentum spectra of charged hadrons with pT<{p_{T} <} 6 GeV/c have been measured near mid-rapidity (0.2 <ő∑<< \eta < 1.4) by the PHOBOS experiment at RHIC in Au + Au and d + Au collisions at sNN=200GeV{\sqrt{s_{_{NN}}} = \rm {200 GeV}}. The spectra for different collision centralities are compared to p+pňČ{p + \bar{p}} collisions at the same energy. The resulting nuclear modification factor for central Au + Au collisions shows evidence of strong suppression of charged hadrons in the high-pTp_{T} region (>2{>2} GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pTp_{T} yields. These measurements suggest a large energy loss of the high-pTp_{T} particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions.Comment: 3 pages, 4 figures, International Europhysics Conference on High Energy Physics EPS (July 17th-23rd 2003) in Aachen, German

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Positive mental health in schizophrenia and healthy comparison groups: relationships with overall health and biomarkers

    Full text link
    ObjectivePositive psychological factors (PPFs) have been reported to have a significant impact on health in the general population. However, little is known about the relationship of these factors with mental and physical health in schizophrenia.MethodOne hundred and thirty-five outpatients with schizophrenia and 127 healthy comparison subjects (HCs), aged 26-65&nbsp;years, were evaluated with scales of resilience, optimism, happiness, and perceived stress. Measures of mental and physical health were also obtained. Regression analyses examined associations of a PPF composite with health variables.ResultsRelative to the HCs, the schizophrenia group had lower levels of PPFs. However, there was considerable heterogeneity, with over one-third of schizophrenia participants having values within the 'normative' range. The PPF composite was positively related to mental and physical health variables and with biomarkers of inflammation and insulin resistance. The relationship between PPFs and mental health was particularly strong for individuals with schizophrenia.ConclusionA sizable minority of adults with chronic schizophrenia have levels of resilience, optimism, happiness, and perceived stress similar to HCs. Psychosocial interventions to enhance PPFs should be tested in patients with serious mental illnesses, with the goal of improving their mental health (beyond controlling symptoms of psychosis) and their physical health

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
    • ‚Ķ
    corecore