32 research outputs found

    Thérapie pharmacologique et caractérisation des processus de migration intracérébrale des cellules souches dans les pathologies neurodégénératives: application à la maladie de Huntington

    No full text
    Doctorat en Sciences médicalesinfo:eu-repo/semantics/nonPublishe

    Control of metabolism by nutrient-regulated nuclear receptors acting in the brain.

    No full text
    International audienceToday, we are witnessing a rising incidence of obesity worldwide. This increase is due to a sedentary life style, an increased caloric intake and a decrease in physical activity. Obesity contributes to the appearance of type 2 diabetes, dyslipidemia and cardiovascular complications due to atherosclerosis, and nephropathy. Therefore, the development of new therapeutic strategies may become a necessity. Given the metabolism controlling properties of nuclear receptors in peripheral organs (such as liver, adipose tissues, pancreas) and their implication in various processes underlying metabolic diseases, they constitute interesting therapeutic targets for obesity, dyslipidemia, cardiovascular disease and type 2 diabetes. The recent identification of the central nervous system as a player in the control of peripheral metabolism opens new avenues to our understanding of the pathophysiology of obesity and type 2 diabetes and potential novel ways to treat these diseases. While the metabolic functions of nuclear receptors in peripheral organs have been extensively investigated, little is known about their functions in the brain, in particular with respect to brain control of energy homeostasis. This review provides an overview of the relationships between nuclear receptors in the brain, mainly at the hypothalamic level, and the central regulation of energy homeostasis. In this context, we will particularly focus on the role of PPARα, PPARγ, LXR and Rev-erbα

    Uncovering bidirectional brain-body interactions in health and disease

    No full text
    International audienceNo abstract availabl

    Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone.

    No full text
    In the adult mammalian brain, neural stem cells persist in the subventricular zone (SVZ) where dopamine D3 receptors are expressed. Here, we demonstrate that addition of 1 microm apomorphine increases cell numbers in post-natal SVZ cell cultures. This effect was prevented by a co-treatment with haloperidol, sulpiride or U-99194A, a D3-preferring antagonist, and mimicked by the dopamine D3 receptor selective agonist 7-hydroxy-dipropylaminotetralin (7-OH-DPAT). EC50 values were 4.04 +/- 1.54 nm for apomorphine and 0.63 +/- 0.13 nm for 7-OH-DPAT, which fits the pharmacological profile of the D3 receptor. D3 receptors were detected in SVZ cells by RT-PCR and immunocytochemistry. D3 receptors were expressed in numerous beta-III tubulin immunopositive cells. The fraction of apoptotic nuclei remained unchanged following apomorphine treatment, thus ruling out any possible effect on cell survival. In contrast, proliferation was increased as both the proportion of nuclei incorporating bromo-deoxyuridine and the expression of the cell division marker cyclin D1 were enhanced. These findings provide support for a regulatory role of dopamine over cellular dynamics in post-natal SVZ.Journal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe

    The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity.

    No full text
    Huntington's disease is a genetic neurodegenerative disorder characterized clinically by both motor and cognitive impairments and striatal lesions. At present, there are no pharmacological treatments able to prevent or slow its development. In the present study, we report the neuroprotective effect of adenosine amine congener (ADAC), a specific A1 receptor agonist known to be devoid of any of the side effects that usually impair the clinical use of such compounds. Remarkably, in a rat model of Huntington's disease generated by subcutaneous infusion of the mitochondrial inhibitor 3-nitropropionic acid (3NP), we have observed that an acute treatment with ADAC (100 microg x kg(-1) x d(-1)) not only strongly reduces the size of the striatal lesion (-40%) and the remaining ongoing striatal degeneration (-30%), but also prevents the development of severe dystonia of hindlimbs. Electrophysiological recording on corticostriatal brain slices demonstrated that ADAC strongly decreases the field EPSP amplitude by 70%, whereas it has no protective effect up to 1 microm against the 3NP-induced neuronal death in primary striatal cultures. This suggests that ADAC protective effects may be mediated presynaptically by the modulation of the energetic impairment-induced striatal excitotoxicity. Altogether, our results indicate that A1 receptor agonists deserve further experimental evaluation in animal models of Huntington's disease.In VitroJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Unilateral induction of progenitors in the spinal cord of hSOD1(G93A) transgenic rats correlates with an asymmetrical hind limb paralysis.

    No full text
    Transgenic rats expressing a mutated form of the human Cu/Zn superoxide dismutase (hSOD1(G93A)) develop an amyotrophic lateral sclerosis (ALS)-like phenotype, including motor neurone degeneration and reactive gliosis in the spinal cord. This study aimed at examining the presence of endogenous neural progenitors in the lumbar spinal cord of these rats at the end-stage of the disease. Immunohistochemical data clearly demonstrated the induced expression of the stem cell factor reported as a chemoattractant and survival factor for neural stem cells as well as nestin (neuro-epithelial stem cell intermediate filament) in the spinal cord sections. While the stem cell factor immunolabelling appeared diffuse throughout the gray matter, nestin labelling was restricted to clusters within the ventral horn. Interestingly, as paralysis regularly develops asymmetrically, induction of nestin was only detected on the ipsilateral side of the predominant symptoms. Finally, immunohistochemical detection of the stem cell factor receptor (c-Kit) revealed its specific induction which coincided with nestin immunolabelling. Together, these results are indicative of endogenous recruitment of neural progenitors within lesioned tissues and could support the development of treatments involving endogenous or exogenous stem cells.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms.

    No full text
    An important aspect of Huntington's disease (HD) pathogenesis which may have important therapeutic implications is that the cellular events leading to cell death may be different in cortical and striatal neurons. In the present study, we characterized cellular changes in cortical and striatal neurons treated with the mitochondrial toxin 3-nitropropionic acid (3NP) in culture. Degeneration induced by 3NP was similar in both striatal and cortical neurons as observed using markers of cell viability and DNA fragmentation. However, in striatal neurons, 3NP produced a marked delocalization of Bad, Bax, cytochrome c and Smac while this was not observed in cortical neurons. Death of striatal neurons was preceded by activation of calpain and was blocked by calpain inhibitor I. In cortical neurons, calpain was not activated and calpain inhibitor I was without effect. In both cell types, caspase-9 and -3 were not activated by 3NP and the caspase inhibitor zVAD-fmk did not provide neuroprotective effect. Interestingly, treatment with staurosporine (STS) triggered caspase-9 and -3 in cortical and striatal cells, suggesting that the molecular machinery related to caspase-dependent apoptosis was functional in both cell types even though this machinery was not involved in 3NP toxicity. The present results clearly demonstrate that under mitochondrial inhibition, striatal and cortical neurons die through different pathways. This suggests that mitochondrial defects in HD may trigger the death of cortical and striatal neurons through different molecular events.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH.

    Get PDF
    International audienceBACKGROUND: Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are complex pathologies characterized by lipid accumulation, chronic inflammation and extensive tissue remodelling. Microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, might not only be biomarkers, but also functional actors in these pathologies. The apoE2-KI mouse is a model of atherosclerosis and NAFLD. Activation of the nuclear receptor PPARα decreases atherosclerosis and components of non-alcoholic steatohepatitis (NASH) in the apoE2-KI mouse. OBJECTIVES: (1) To determine whether MPs are present in atherosclerotic lesions, liver and plasma during atherosclerosis and NASH progression in apoE2-KI mice, and (2) to study whether PPARα activation modulates MP concentrations. METHODS: ApoE2-KI mice were fed a Western diet to induce atherosclerosis and NASH. MPs were isolated from atherosclerotic lesions, liver and blood and quantified by flow cytometry. RESULTS: An increase of MPs was observed in the atherosclerotic lesions and in the liver of apoE2-KI mice upon Western diet feeding. PPARα activation with fenofibrate decreased MP levels in the atherosclerotic lesions in a PPARα-dependent manner, but did not influence MP concentrations in the liver. CONCLUSION: Here we report that MPs are present in atherosclerotic lesions and in the liver of apoE2-KI mice. Their concentration increased during atherosclerosis and NASH development. PPARα activation differentially modulates MP levels in a tissue-specific manner