64 research outputs found

    Cationic Amino Acids Specific Biomimetic Silicification in Ionic Liquid: A Quest to Understand the Formation of 3-D Structures in Diatoms

    Get PDF
    The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids

    Novel Automated Blood Separations Validate Whole Cell Biomarkers

    Get PDF
    Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples.To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes.Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials

    Absence of Morphotropic Phase Boundary Effects in BiFeO3-PbTiO3 Thin Films Grown via a Chemical Multilayer Deposition Method

    Full text link
    Here, we report the unusual behaviour shown by the (BiFeO3)1-x-(PbTiO3)x (BF-xPT) films prepared using a multilayer deposition approach by chemical solution deposition method. Thin film samples of various compositions were prepared by depositing several bilayers of BF and PT precursors by varying the BF or PT layer thicknesses. X-ray diffraction showed that final samples of all compositions show mixing of the two compounds resulting in a single phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk equilibrium compositions, our samples show a monoclinic (MA type) structure suggesting disappearance of morphotropic phase boundary (MPB) about x = 0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of remnant polarization at MPB as shown by the ferroelectric measurements. Magnetic measurements show that the magnetization of the samples increases with increasing BF content. Significant magnetization of the samples indicates melting of spin spirals in the BF-xPT arising from random distribution of iron atoms across the film. Absence of Fe2+ ions in the films was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that used thin film processing methodology significantly changes the structural evolution in contrast to predictions from the equilibrium phase diagram as well as modify the functional characteristics of BP-xPT system dramatically.Comment: 15 pages, 6 figure

    Using Hydrophilic Ionic Liquid, [bmim]BF4 – Ethylene Glycol System as a Novel Media for the Rapid Synthesis of Copper Nanoparticles

    Get PDF
    In this work, we present a novel method for the synthesis of copper nanoparticles. We utilize the charge compensatory effect of ionic liquid [bmim]BF4 in conjunction with ethylene glycol for providing electro-steric stabilization to copper nanoparticles prepared from copper sulphate using hydrazine hydrate as a reducing agent. The formed copper nanoparticles showed extended stability over a period of one year. Copper nanoparticles thus prepared were characterized by powder X-ray diffraction measurements (pXRD), transmission electron microscopy (TEM) and quasi elastic light scattering (QELS) techniques. Powder X-ray diffraction (pXRD) analysis revealed relevant Bragg's reflection for crystal structure of copper. Powder X-ray diffraction plots also revealed no oxidized material of copper nanoparticles. TEM showed nearly uniform distribution of the particles in methanol and confirmed by QELS. Typical applications of copper nanoparticles include uses in conductive films, lubrication and nanofluids. Currently efforts are under way in our laboratory for using these nanoparticles as catalysts for a variety of organic reactions

    Contrasting Micro/Nano Architecture on Termite Wings: Two Divergent Strategies for Optimising Success of Colonisation Flights

    Get PDF
    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/‘technologies’ on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C18 beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper
    corecore