337 research outputs found

    DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases

    Get PDF
    We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD

    Identical twins carry a persistent epigenetic signature of early genome programming

    Get PDF
    The mechanisms underlying how monozygotic (or identical) twins arise are yet to be determined. Here, the authors investigate this in an epigenome-wide association study, showing that monozygotic twinning has a characteristic DNA methylation signature in adult somatic tissues.Monozygotic (MZ) twins and higher-order multiples arise when a zygote splits during pre-implantation stages of development. The mechanisms underpinning this event have remained a mystery. Because MZ twinning rarely runs in families, the leading hypothesis is that it occurs at random. Here, we show that MZ twinning is strongly associated with a stable DNA methylation signature in adult somatic tissues. This signature spans regions near telomeres and centromeres, Polycomb-repressed regions and heterochromatin, genes involved in cell-adhesion, WNT signaling, cell fate, and putative human metastable epialleles. Our study also demonstrates a never-anticipated corollary: because identical twins keep a lifelong molecular signature, we can retrospectively diagnose if a person was conceived as monozygotic twin.Molecular Epidemiolog

    Investigating the relationships between unfavourable habitual sleep and metabolomic traits: evidence from multicohort multivariable regression and Mendelian randomization analyses

    No full text
    Background: Sleep traits are associated with cardiometabolic disease risk, with evidence from Mendelian randomization (MR) suggesting that insomnia symptoms and shorter sleep duration increase coronary artery disease risk. We combined adjusted multivariable regression (AMV) and MR analyses of phenotypes of unfavourable sleep on 113 metabolomic traits to investigate possible biochemical mechanisms linking sleep to cardiovascular disease. Methods: We used AMV (N = 17,368) combined with two-sample MR (N = 38,618) to examine effects of self-reported insomnia symptoms, total habitual sleep duration, and chronotype on 113 metabolomic traits. The AMV analyses were conducted on data from 10 cohorts of mostly Europeans, adjusted for age, sex, and body mass index. For the MR analyses, we used summary results from published European-ancestry genome-wide association studies of self- reported sleep traits and of nuclear magnetic resonance (NMR) serum metabolites. We used the inverse-variance weighted (IVW) method and complemented this with sensitivity analyses to assess MR assumptions. Results: We found consistent evidence from AMV and MR analyses for associations of usual vs. sometimes/rare/never insomnia symptoms with lower citrate (− 0.08 standard deviation (SD)[95% confidence interval (CI) − 0.12, − 0.03] in AMV and − 0.03SD [− 0.07, − 0.003] in MR), higher glycoprotein acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06SD [0.03, 0.10) in MR]), lower total very large HDL particles (− 0.04SD [− 0.08, 0.00] in AMV and − 0.05SD [− 0.09, − 0.02] in MR), and lower phospholipids in very large HDL particles (− 0.04SD [− 0.08, 0.002] in AMV and − 0.05SD [− 0.08, − 0.02] in MR). Longer total sleep duration associated with higher creatinine concentrations using both methods (0.02SD per 1 h [0.01, 0.03] in AMV and 0.15SD [0.02, 0.29] in MR) and with isoleucine in MR analyses (0.22SD [0.08, 0.35]). No consistent evidence was observed for effects of chronotype on metabolomic measures. Conclusions: Whilst our results suggested that unfavourable sleep traits may not cause widespread metabolic disruption, some notable effects were observed. The evidence for possible effects of insomnia symptoms on glycoprotein acetyls and citrate and longer total sleep duration on creatinine and isoleucine might explain some of the effects, found in MR analyses of these sleep traits on coronary heart disease, which warrant further investigation.</p

    Introduction to epigenetic inheritance: Definition, mechanisms, implications and relevance.

    No full text
    Complex phenotypes result from the interaction between genetic and environmental informations. Almost a decade ago, the discovery of acquired epigenetic inheritance has shown that individual’s environmental experiences can influence developmental and phenotypic trajectories across several generations. The field is now starting to unveil the molecular mechanisms, while its relevance for complex disease risk and adaptive evolution is still unclear and strongly debated. The aim of this chapter is to introduce the reader to the concept of epigenetic inheritance, provide an overview on the underlying molecular determinants and highlight its potential relevance for individual’s susceptibility to complex, non-mendelian, diseases

    Refining attention-deficit/hyperactivity disorder and autism spectrum disorder genetic loci by integrating summary data from genome-wide association, gene expression, and DNA methylation studies

    No full text
    Background: Recent genome-wide association studies (GWASs) identified the first genetic loci associated with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The next step is to use these results to increase our understanding of the biological mechanisms involved. Most of the identified variants likely influence gene regulation. The aim of the current study is to shed light on the mechanisms underlying the genetic signals and prioritize genes by integrating GWAS results with gene expression and DNA methylation (DNAm) levels. Methods: We applied summary-data&#x2013;based Mendelian randomization to integrate ADHD and ASD GWAS data with fetal brain expression and methylation quantitative trait loci, given the early onset of these disorders. We also analyzed expression and methylation quantitative trait loci datasets of adult brain and blood, as these provide increased statistical power. We subsequently used summary-data&#x2013;based Mendelian randomization to investigate if the same variant influences both DNAm and gene expression levels. Results: We identified multiple gene expression and DNAm levels in fetal brain at chromosomes 1 and 17 that were associated with ADHD and ASD, respectively, through pleiotropy at shared genetic variants. The analyses in brain and blood showed additional associated gene expression and DNAm levels at the same and additional loci, likely because of increased statistical power. Several of the associated genes have not been identified in ADHD and ASD GWASs before. Conclusions: Our findings identified the genetic variants associated with ADHD and ASD that likely act through gene regulation. This facilitates prioritization of candidate genes for functional follow-up studies

    RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation

    Get PDF
    Background: A gap exists in our mechanistic understanding of how genetic and environmental risk factors converge at the molecular level to result in the emergence of autism symptoms. We compared blood-based gene expression signatures in identical twins concordant and discordant for autism spectrum condition (ASC) to differentiate genetic and environmentally driven transcription differences, and establish convergent evidence for biological mechanisms involved in ASC. Methods: Genome-wide gene expression data were generated using RNA-seq on whole blood samples taken from 16 pairs of monozygotic (MZ) twins and seven twin pair members (39 individuals in total), who had been assessed for ASC and autism traits at age 12. Differential expression (DE) analyses were performed between (a) affected and unaffected subjects (N = 36) and (b) within discordant ASC MZ twin pairs (total N = 11) to identify environmental-driven DE. Gene set enrichment and pathway testing was performed on DE gene lists. Finally, an integrative analysis using DNA methylation data aimed to identify genes with consistent evidence for altered regulation in cis. Results: In the discordant twin analysis, three genes showed evidence for DE at FDR < 10%: IGHG4, EVI2A and SNORD15B. In the case-control analysis, four DE genes were identified at FDR<10% including IGHG4, PRR13P5, DEPDC1B, and ZNF501. We find enrichment for DE of genes curated in the SFARI human gene database. Pathways showing evidence of enrichment included those related to immune cell signalling and immune response, transcriptional control and cell cycle/proliferation. Integrative methylomic and transcriptomic analysis identified a number of genes showing suggestive evidence for cis dysregulation. Limitations: Identical twins stably discordant for ASC are rare, and as such the sample size was limited and constrained to the use of peripheral blood tissue for transcriptomic and methylomic profiling. Given these primary limitations, we focused on transcript-level analysis. Conclusions: Using a cohort of ASC discordant and concordant MZ twins, we add to the growing body of transcriptomic-based evidence for an immune-based component in the molecular aetiology of ASC. Whilst the sample size was limited, the study demonstrates the utility of the discordant MZ twin design combined with multi-omics integration for maximising the potential to identify disease-associated molecular signals