930 research outputs found

    Experimental tests on shallow foundations of onshore wind turbine towers

    Get PDF
    The current effort towards the progressive switch from carbon-based to renewable energy production is leading to a relevant spreading of both on- and off-shore wind turbine towers. Regarding reinforced concrete shallow foundations of onshore wind turbine steel towers, possible reductions of reinforcement may increase their sustainability, speed of erection, and competitiveness. The article presents the results of an experimental program carried out at Politecnico di Milano concerning both cyclic and monotonic loading, simulating extreme wind conditions on 1:15 scaled models of wind turbine steel towers connected by stud bolt adapters to reinforced concrete shallow foundations embedded in a sandy soil. Three couples of foundation specimens were tested with different reinforcement layouts: (a) similar to current praxis, (b) without shear reinforcement, and (c) without shear reinforcement and with 50% of ordinary steel rebars replaced by steel fibers. Additional vertical loads were added to the small-scale models in order to ensure similarity in terms of stresses. The test results allowed to (i) characterize the mechanical behavior of the foundation element considering soil-structure interaction under both service and ultimate load conditions, (ii) assess the foundation failure mode, (iii) highlight the role of each typology of reinforcing bars forming the cage, and (iv) provide hints for the optimization of these latter

    Dynamics of viscous dissipative gravitational collapse: A full causal approach

    Full text link
    The Misner and Sharp approach to the study of gravitational collapse is extended to the viscous dissipative case in, both, the streaming out and the diffusion approximations. The dynamical equation is then coupled to causal transport equations for the heat flux, the shear and the bulk viscosity, in the context of Israel--Stewart theory, without excluding the thermodynamics viscous/heat coupling coefficients. The result is compared with previous works where these later coefficients were neglected and viscosity variables were not assumed to satisfy causal transport equations. Prospective applications of this result to some astrophysical scenarios are discussed.Comment: 22 pages Latex. To appear in Int. J. Mod. Phys. D. Typos correcte

    Full Causal Bulk Viscous Cosmologies with time-varying Constants

    Full text link
    We study the evolution of a flat Friedmann-Robertson-Walker Universe, filled with a bulk viscous cosmological fluid, in the presence of time varying ``constants''. The dimensional analysis of the model suggests a proportionality between the bulk viscous pressure of the dissipative fluid and the energy density. On using this assumption and with the choice of the standard equations of state for the bulk viscosity coefficient, temperature and relaxation time, the general solution of the field equations can be obtained, with all physical parameters having a power-law time dependence. The symmetry analysis of this model, performed by using Lie group techniques, confirms the unicity of the solution for this functional form of the bulk viscous pressure. In order to find another possible solution we relax the hypotheses assuming a concrete functional dependence for the ``constants''.Comment: 28 pages, RevTeX

    Thermal Conduction in Systems out of Hydrostatic Equilibrium

    Get PDF
    We analyse the effects of thermal conduction in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of thermal relaxation time. It is obtained that the resulting evolution will critically depend on a parameter defined in terms of thermodynamic variables, which is constrained by causality requirements.Comment: 16 pages, emTex (LaTex 2.09). To appear in Classical and Quantum Gravit

    On Scaling Solutions with a Dissipative Fluid

    Full text link
    We study the asymptotic behaviour of scaling solutions with a dissipative fluid and we show that, contrary to recent claims, the existence of stable accelerating attractor solution which solves the `energy' coincidence problem depends crucially on the chosen equations of state for the thermodynamical variables. We discuss two types of equations of state, one which contradicts this claim, and one which supports it.Comment: 8 pages and 5 figures; to appear in Class. Quantum Gra

    On the dual interpretation of zero-curvature Friedmann-Robertson-Walker models

    Get PDF
    Two possible interpretations of FRW cosmologies (perfect fluid or dissipative fluid)are considered as consecutive phases of the system. Necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system (the ''critical point '').Comment: 13 pages Latex, to appear in Class.Quantum Gra

    The basis for ductility evaluation in SFRC structures in MC2020: An investigation on slabs and shallow beams

    Get PDF
    The paper presents a synthesis of an extensive experimental campaign on linear and two-dimensional steel fiber reinforced concrete (SFRC) structural elements carried out to check the ductility requirements aimed at guaranteeing limit analysis approaches for the computation of ultimate load-bearing capacity of SFRC structures; special attention is devoted to the role of the degree of redundancy of the structure. In particular, full-scale shallow beams and slabs reinforced with steel fibers (with or without conventional longitudinal reinforcement) were tested in two different laboratories: the Politecnico di Milano (PoliMI) and the University of Brescia (UniBS). In this experimental campaign, two different fiber contents and fiber types were considered. The experimental investigation, carried out within the activities to support Annex L of Eurocode 2, was fundamental also for developing the design rules included in the fib Model Code 2020 and allowed to formulate conclusions regarding optimization of the mix design, ductility, and design prediction at the ultimate capacity

    Some analytical models of radiating collapsing spheres

    Get PDF
    We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late
    corecore