27,491 research outputs found

    Physical state representations and gauge fixing in string theory

    Full text link
    We re-examine physical state representations in the covariant quantization of bosonic string. We especially consider one parameter family of gauge fixing conditions for the residual gauge symmetry due to null states (or BRST exact states), and obtain explicit representations of observable Hilbert space which include those of the DDF states. This analysis is aimed at giving a necessary ingredient for the complete gauge fixing procedures of covariant string field theory such as temporal or light-cone gauge.Comment: 16 page

    Secondary Photons from High-energy Protons Accelerated in Hypernovae

    Full text link
    Recent observations show that hypernovae may deposit some fraction of their kinetic energy in mildly relativistic ejecta. In the dissipation process of such ejecta in a stellar wind, cosmic ray protons can be accelerated up to ∌1019\sim 10^{19} eV. We discuss the TeV to MeV gamma-ray and the X-ray photon signatures of cosmic rays accelerated in hypernovae. Secondary X-ray photons, emitted by electron-positron pairs produced via cascade processes due to high-energy protons, are the most promising targets for X-ray telescopes. Synchrotron photons emitted by protons can appear in the GeV band, requiring nearby (<40<40 Mpc) hypernovae for detection with GLAST. In addition, air Cherenkov telescopes may be able to detect regenerated TeV photons emitted by electron-positron pairs generated by CMB attenuation of π0\pi^0 decay photons.Comment: Accepted by ApJ

    Hadronic Models for the Extra Spectral Component in the short GRB 090510

    Full text link
    A short gamma-ray burst GRB 090510 detected by {\it Fermi} shows an extra spectral component between 10 MeV and 30 GeV, an addition to a more usual low-energy (<10<10 MeV) Band component. In general, such an extra component could originate from accelerated protons. In particular, inverse Compton emission from secondary electron-positron pairs and proton synchrotron emission are competitive models for reproducing the hard spectrum of the extra component in GRB 090510. Here, using Monte Carlo simulations, we test the hadronic scenarios against the observed properties. To reproduce the extra component around GeV with these models, the proton injection isotropic-equivalent luminosity is required to be larger than 105510^{55} erg/s. Such large proton luminosities are a challenge for the hadronic models.Comment: 12pages, 4 figures. Accepted for publication in ApJ

    Delayed Onset of High-Energy Emissions in Leptonic and Hadronic Models of Gamma-Ray Bursts

    Full text link
    The temporal--spectral evolution of the prompt emission of gamma-ray bursts (GRBs) is simulated numerically for both leptonic and hadronic models. For weak enough magnetic fields, leptonic models can reproduce the few seconds delay of the onset of GeV photon emission observed by Fermi-LAT, due to the slow growth of the target photon field for inverse Compton scattering. However, even for stronger magnetic fields, the GeV delay can be explained with hadronic models, due to the long acceleration timescale of protons and the continuous photopion production after the end of the particle injection. While the FWHMs of the MeV and GeV lightcurves are almost the same in one-zone leptonic models, the FWHM of the 1--30 GeV lightcurves in hadronic models are significantly wider than those of the 0.1--1 MeV lightcurves. The amount of the GeV delay depends on the importance of the Klein--Nishina effect in both the leptonic and hadronic models. In our examples of hadronic models the energies of the escaped neutrons are comparable to the gamma-ray energy, although their contribution to the ultra high-energy cosmic rays is still subdominant. The resulting neutrino spectra are hard enough to avoid the flux limit constraint from IceCube. The delay of the neutrino emission onset is up to several times longer than the corresponding delay of the GeV photon emission onset. The quantitative differences in the lightcurves for various models may be further tested with future atmospheric Cherenkov telescopes whose effective area is larger than that of Fermi-LAT, such as CTA.Comment: Accepted for publication in ApJ; 35 pages, 17 figure

    Very High Energy Neutrinos Originating from Kaons in Gamma-Ray Bursts

    Full text link
    We simulate neutrino production in a gamma-ray burst (GRB) with the most detailed method to date. We show that the highest energy neutrinos from GRBs mainly come from kaons. Although there is little chance to detect such neutrinos, attempts of detection are very important to prove physical conditions in GRBs.Comment: 4 figures. Accepted for publication in ApJ

    Boltzmann Equation with a Large Potential in a Periodic Box

    Full text link
    The stability of the Maxwellian of the Boltzmann equation with a large amplitude external potential Ί\Phi has been an important open problem. In this paper, we resolve this problem with a large C3−C3-potential in a periodic box Td\mathbb{T}^d, d≄3d \geq 3. We use [1] in Lp−L∞L^p-L^{\infty} framework to establish the well-posedness and the L∞−L^{\infty}-stability of the Maxwellian ÎŒE(x,v)=exp⁥{−∣v∣22−Ω(x)}\mu_E(x,v)=\exp\{-\frac{|v|^2}{2}-\Phi(x)\}

    Prompt X-ray and Optical Excess Emission due to Hadronic Cascades in Gamma-Ray Bursts

    Full text link
    A fraction of gamma-ray bursts exhibit distinct spectral features in their prompt emission below few 10s of keV that exceed simple extrapolations of the low-energy power-law portion of the Band spectral model. This is also true for the prompt optical emission observed in several bursts. Through Monte Carlo simulations, we model such low-energy spectral excess components as hadronic cascade emission initiated by photomeson interactions of ultra-high-energy protons accelerated within GRB outflows. Synchrotron radiation from the cascading, secondary electron-positron pairs can naturally reproduce the observed soft spectra in the X-ray band, and in some cases the optical spectra as well. These components can be directly related to the higher energy radiation at GeV energies due to the hadronic cascades. Depending on the spectral shape, the total energy in protons is required to be comparable to or appreciably larger than the observed total photon energy. In particular, we apply our model to the excess X-ray and GeV emission of GRB 090902B, and the bright optical emission of the "naked-eye" GRB 080319B. Besides the hard GeV components detected by {\it Fermi}, such X-ray or optical spectral excesses are further potential signatures of ultra-high-energy cosmic ray production in gamma-ray bursts.Comment: 12 pages, 2 figure

    Josephson Spin Current in Triplet Superconductor Junctions

    Get PDF
    This paper theoretically discusses the spin current in spin-triplet superconductor / insulator / spin-triplet superconductor junctions. At low temperatures, a midgap Andreev resonant state anomalously enhances not only the charge current but also the spin current. The coupling between the Cooper pairs and the electromagnetic fields leads to the Frounhofer pattern in the direct current spin flow in magnetic fields and the alternative spin current under applied bias-voltages.Comment: 4 pages, 2 figure

    Prompt GeV-TeV Emission of Gamma-Ray Bursts Due to High-Energy Protons, Muons and Electron-Positron Pairs

    Full text link
    In the framework of the internal shock scenario, we model the broadband prompt emission of gamma-ray bursts (GRBs) with emphasis on the GeV-TeV bands, utilizing Monte Carlo simulations that include various processes associated with electrons and protons accelerated to high energies. While inverse Compton emission from primary electrons is often dominant, different proton-induced mechanisms can also give rise to distinct high-energy components, such as synchrotron emission from protons, muons or secondary electrons/positrons injected via photomeson interactions. In some cases, they give rise to double spectral breaks that can serve as unique signatures of ultra-high-energy protons. We discuss the conditions favorable for such emission, and how they are related to the production of ultra-high-energy cosmic rays and neutrinos in internal shocks. Ongoing and upcoming observations by {\it GLAST}, atmospheric Cerenkov telescopes and other facilities will test these expectations and provide important information on the physical conditions in GRB outflows.Comment: 11 pages, 8 figures and 14 appendix figures, accepted for publication in ApJ vol. 671 with minor revision
    • 

    corecore