28 research outputs found

    Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor

    Get PDF
    Brilliance usually refers to the light reflected by the facets of a gemstone such as diamond due to its high refractive index. Nowadays, high-refractive-index materials find application in many optical and photonic devices and are mostly of inorganic nature. However, these materials are usually obtained by toxic or expensive production processes. Herein, the synthesis of a thin-film organic semiconductor, namely, polymeric carbon nitride, by thermal chemical vapor deposition is presented. Among polymers, this organic material combines the highest intrinsic refractive index reported so far with high transparency in the visible spectrum, even reaching the range of diamond. Eventually, the herein presented deposition of high quality thin films and their optical characteristics open the way for numerous new applications and devices in optics, photonics, and beyond based on organic materials

    CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus

    Get PDF
    The rice blast fungus Magnaporthe oryzae is the most serious pathogen of cultivated rice and a significant threat to global food security. To accelerate targeted mutation and specific genome editing in this species, we have developed a rapid plasmid-free CRISPR-Cas9-based genome editing method. We show that stable expression of Cas9 is highly toxic to M. oryzae. However efficient gene editing can be achieved by transient introduction of purified Cas9 pre-complexed to RNA guides to form ribonucleoproteins (RNPs). When used in combination with oligonucleotide or PCR-generated donor DNAs, generation of strains with specific base pair edits, in-locus gene replacements, or multiple gene edits, is very rapid and straightforward. We demonstrate a co-editing strategy for the creation of single nucleotide changes at specific loci. Additionally, we report a novel counterselection strategy which allows creation of precisely edited fungal strains that contain no foreign DNA and are completely isogenic to the wild type. Together, these developments represent a scalable improvement in the precision and speed of genetic manipulation in M. oryzae and are likely to be broadly applicable to other fungal species

    Analysis of Organisation-Committed Human Error by Extended CREAM

    No full text