2,347 research outputs found

    A new conducting polymer with exceptional visible-light photocatalytic activity derived from varbituric acid polycondensation

    No full text
    Abstract A novel covalent, metal-free, photocatalytic material is prepared by thermal polymerization of barbituric acid (BA). The structure of the photocatalyst is analyzed by using scanning electron microscopy, X-ray diffraction, and infrared, UV?visible, and 1H solution and 13C solid-state NMR spectroscopy. The photodegradation efficiency of BA thermally polymerized at different temperatures is tested by photocatalytic degradation of aquatic rhodamine B (RhB) dye under visible-light irradiation. It is shown that heating BA at an optimized temperature of 300 °C, that is, still in the range that polymer-like polycondensation takes place, results in a photocatalyst that can remove RhB with 96% photodegradation efficiency after 70 min exposure to visible light. The polycondensation reaction of BA is identified to process through precipitation of trimer units as primary building blocks. Reference experiments such as addition of scavengers and saturation with oxygen are studied to understand the photodegradation process. It is shown that the presence of triethanolamine, and excess of oxygen and p-benzoquinone in the solution of RhB and photocatalyst (BA300) is not beneficial, but decreases the photodegradation efficiency

    Dichloromethylation of enones by carbon nitride photocatalysis

    No full text
    Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential (−40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles

    Poly(ionic liquid)s : polymers expanding classical property profiles

    Get PDF
    AbstractIn recent years, polymeric/polymerized ionic liquids or poly(ionic liquid)s (PILs) were found to take an enabling role in some fields of polymer chemistry and material science. PILs combine the unique properties of ionic liquids with the flexibility and properties of macromolecular architectures and provide novel properties and functions that are of huge potential in a multitude of applications, including solid ionic conductor, powerful dispersant and stabilizer, absorbent, precursor for carbon materials, porous polymers, etc. So far, the preparation of PILs with various forms in cations and anions has mostly focused on the conventional free radical polymerization of IL monomers. Recent progress in the preparation of PILs via controlled/“living” radical polymerizations points out an unprecedented opportunity to precisely design and control macromolecular architecture of IL species on a meso-/nanoscale within a polymer matrix. There are also newly emerging polymerization techniques that have appeared for the preparation of PILs which have further pushed the limit of the design of PILs. In this review, we try to summarize the current preparative strategies of PILs, providing a systematic and actual view on the polymer chemistry behind. A discussion of the properties and applications of PILs constitutes the second part of this review

    Artificial humic acids : sustainable materials against climate change

    Get PDF
    Abstract Humic acid, as a natural organic matter, is widely distributed in surface soil, oceans, rivers, and other ecological environments throughout the whole earth ecosystem. Humic acid provides abundant organic carbon and helps to maintain a hydrated, pH and redox buffered environment hosting the soil microbiome. Humic acid is however also a largely ignored polymer material full of exciting functional properties, and its scale is enormous. This perspective article discusses its synthesis and management as a tool to tackle parts of the climate crisis as well its use in technological applications, as made by chemical conversion of agricultural side products to artificial humic acids

    A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

    Get PDF
    A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion. Here, a nanofluidic ion diode was realized by modifying carbon nitride nanotubes with different molecules yielding an asymmetric surface charge that allows for ion rectification. With the advantages of low-cost, thermal and mechanical robustness, and simple fabrication process, carbon nitride nanotubes with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems

    Dewetting-assisted interface templating : complex emulsions to multicavity particles

    Get PDF
    Interfacial tension-driven formation of intricate microparticle geometries from complex emulsions is presented in this work. Emulsion-templating is a reliable platform for the generation of a diverse set of microparticles. Here, water-in-styrene-in-water complex emulsions undergo reproducible metamorphosis, i.e., from liquid state emulsions to solid structured microparticles are employed. In contrast to the traditional usage of glass-based microfluidics, polydimethylsiloxane (PDMS) swelling behavior is employed to generate complex emulsions with multiple inner cores. In the presence of block copolymer surfactant, these emulsions undergo gravity-driven dewetting of styrene, to transform into membranous structures with compartments. Further polymerization of styrene skeletal remains resulted in microparticles with interesting geometries and intact membranes. Mechanical and confocal microscopic studies prove the absence of polystyrene within these membranes. Using osmotic pressure, membrane rupture and release of encapsulated gold nanoparticles from such polymerized emulsions leading up to applications in cargo delivery and membrane transport are promoted. Even after membrane rupture, the structured microparticles have shown interesting light-scattering behavior for applications in structural coloring and biosensing. Thereby, proving PDMS-based swelling as a potential methodology for reproducible production of complex emulsions with a potential to be transformed into membranous emulsions or solid microparticles with intricate structures and multiple applications