82 research outputs found

    Elastisch arbeitende Beine: Strategien und Bauprinzipien

    Get PDF
    In this thesis the mechanisms and advantages of spring-like leg operation were investigated. By examining the long jump the general dynamic was described using a hierarchy of simple models taking salient mechanical and muscle-physiological properties into account. In dieser Dissertation wurden die Mechanismen und Vorteile federartig arbeitender Beine untersucht. Am Beispiel des Weitsprunges wurde die grundlegende Dynamik in einer Hierarchie einfacher mechanischer und muskelphysiologischer Modelle beschrieben

    Adjustable compliance and biarticularity could improve hopping efficiency and robustness

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P7

    Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg

    Get PDF
    It has been shown that human-like hopping can be achieved by muscle reflex control in neuromechanical simulations. However, it is unclear if this concept is applicable and feasible for controlling a real robot. This paper presents a low-cost two-segmented robotic leg design and demonstrates the feasibility and the benefits of the bio-inspired neuromuscular reflex based control for hopping. Simulation models were developed to describe the dynamics of the real robot. Different neuromuscular reflex pathways were investigated with the simulation models. We found that stable hopping can be achieved with both positive muscle force and length feedback, and the hopping height can be controlled by modulating the muscle force feedback gains with the return maps. The force feedback neuromuscular reflex based controller is robust against body mass and ground impedance changes. Finally, we implemented the controller on the real robot to prove the feasibility of the proposed neuromuscular reflex based control idea. This paper demonstrates the neuromuscular reflex based control approach is feasible to implement and capable of achieving stable and robust hopping in a real robot. It provides a promising direction of controlling the legged robot to achieve robust dynamic motion in the future

    Can a user self-tuned exoskeleton control reduce walking metabolic cost?

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P3

    Poverty and Food Needs: Sac County, Iowa

    Get PDF
    Poverty and food insecurity impact the welfare of individuals, families, and communities. This profile describes indicators of poverty, food insecurity, and other measures of general economic well-being in Sac County, Iowa


    Get PDF
    ABSTRACT — Bouncing, balancing and swinging the leg forward can be considered as three basic control tasks for bipedal locomotion. Defining the trunk by an unstable inverted pendulum, balancing as being translated to trunk stabilization is the main focus of this paper. The control strategy is to generate a hip torque to have upright trunk to achieve robust hopping and running. It relies on the Virtual Pendulum (VP) concept which is recently proposed for trunk stabilization, based on human/animal locomotion analysis. Based on this concept, a control approach, named Virtual Pendulum Posture control (VPPC) is presented, in which the trunk is stabilized by redirecting the ground reaction force to a virtual support point. The required torques patterns generated by the controller, could partially be exerted by elastic structures like hip springs. Hybrid Zero Dynamics (HZD) control approach is also applied as an exact method of keeping the trunk upright. Stability of the motion which is investigated by Poincare ´ map analysis could be achieved by hip springs, VPPC and HZD. The results show that hip springs, revealing muscle properties, could facilitate trunk stabilization. Compliance in hip produces acceptable performance and robustness compared with VPPC and HZD, while it is a passive structure

    From template to anchors: transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability

    Get PDF
    Biomechanical models with different levels of complexity are of advantage to understand the underlying principles of legged locomotion. Following a minimalistic approach of gradually increasing model complexity based on Template & Anchor concept, in this paper, a spring-loaded inverted pendulumbased walking model is extended by a rigid trunk, hip muscles and reflex control, called nmF (neuromuscular force modulated compliant hip) model. Our control strategy includes leg force feedback to activate hip muscles (originated from the FMCH approach), and a discrete linear quadratic regulator for adapting muscle reflexes. The nmF model demonstrates human-like walking kinematic and dynamic features such as the virtual pendulum (VP) concept, inherited from the FMCH model. Moreover, the robustness against postural perturbations is two times higher in the nmF model compared to the FMCH model and even further increased in the adaptive nmF model. This is due to the intrinsic muscle dynamics and the tuning of the reflex gains. With this, we demonstrate, for the first time, the evolution of mechanical template models (e.g. VP concept) to a more physiological level (nmF model). This shows that the template model can be successfully used to design and control robust locomotor systems with more realistic system behaviours

    Anchoring the SLIP template: The effect of leg mass on running stability

    Get PDF
    Spring-like leg behavior was found in the global dynamics of human and animal running in sagittal plane. The corresponding template model, the conservative spring-loaded inverted pendulum (SLIP), shows stability for a large range of speeds and is, therefore, a promising concept for the design of legged robots. However, an anchoring of this template is needed in order to provide functions of biological structures (e.g., mass distribution, leg design) and engineers’ details for construction. We extend the SLIP template model towards two new models that we call M-SLIP and BM-SLIP by adding considerable leg masses to investigate the influence of leg rotation on running stability. Our study clearly reveals that the spring-loaded inverted pendulum can be anchored in a leg mass model. This supports model- and simulation-driven engineering towards robotic behavior inspired from biological systems

    Meßtechnik (Biomechanik) (4)

    No full text
    • …