2,370 research outputs found

    The complete sequence of a human Y chromosome.

    No full text
    The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes

    Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset

    Get PDF
    The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol-cloud-meteorology interactions. An HU-25 Falcon and King Air conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes


    Full text link
    The process of particle nucleation and growth at the initial and intermediate stages of bulk crystallization in metastable liquids is studied. An integrodifferential model of balance and kinetic equations with corresponding boundary and initial conditions is formulated with allowance

    Directional Sensitivity of the NEWSdm Experiment to Cosmic Ray Boosted Dark Matter

    Full text link
    We present a study of a directional search for Dark Matter boosted forward when scattered by cosmic-ray nuclei, using a module of the NEWSdm experiment. The boosted Dark Matter flux at the edge of the Earth's atmosphere is expected to be pointing to the Galactic Center, with a flux 15 to 20 times larger than in the transverse direction. The module of the NEWSdm experiment consists of a 10 kg stack of Nano Imaging Trackers, i.e.~newly developed nuclear emulsions with AgBr crystal sizes down to a few tens of nanometers. The module is installed on an equatorial telescope. The relatively long recoil tracks induced by boosted Dark Matter, combined with the nanometric granularity of the emulsion, result in an extremely low background. This makes an installation at the INFN Gran Sasso laboratory, both on the surface and underground, viable. A comparison between the two locations is made. The angular distribution of nuclear recoils induced by boosted Dark Matter in the emulsion films at the surface laboratory is expected to show an excess with a factor of 3.5 in the direction of the Galactic Center. This excess allows for a Dark Matter search with directional sensitivity. The surface laboratory configuration prevents the deterioration of the signal in the rock overburden and it emerges as the most powerful approach for a directional observation of boosted Dark Matter with high sensitivity. We show that, with this approach, a 10 kg module of the NEWSdm experiment exposed for one year at the Gran Sasso surface laboratory can probe Dark Matter masses between 1 keV/c2^2 and 1 GeV/c2^2 and cross-section values down to 103010^{-30}~cm2^2 with a directional sensitive search.Comment: 15 pages, 14 figures, updated references, clarified discussion in intro section. Submitted to JCA

    Updated constraints on sterile neutrino mixing in the OPERA experiment using a new ν e identification method

    No full text

    RPC-based Muon Identification System for the neutrino detector of the SHiP experiment

    No full text
    The SHiP experiment has been proposed at CERN to shed light on phenomena still unexplained in the framework of the Standard Model, such as the nature of dark matter, the baryonic asymmetry of the Universe and the neutrino oscillations, searching for hints of New Physics. A section of the detector will be dedicated to the study of neutrino physics with special emphasis on tau neutrino properties, still very poorly measured. A system to identify the muons produced in neutrino interactions, based on RPC technology, has been proposed and it is presented in detail in this paper

    Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization

    No full text
    Novel tetragonal matrix Ba0.5−xLn0.5NaxF2.5−x with x = 0.08, doped by Yb3+, Ho3+, Er3+, was synthesized by molten salt synthesis (MSS) from nitrate flux. XRD data show that the tetragonal phase with a = 4.122(1) Å, c = 17.672(1) Å is stable in an argon atmosphere up to 960 °C. Luminescence spectra recorded in 500–900 nm and 1050–1700 nm upon 974 nm pumping demonstrated the characteristic luminescence at 1550 nm (4I13/2 → 4I15/2) for Er3+ and 1150 nm (5I6 → 5I8) for Ho3+. The relative thermal sensitivity (Sr) at 296–316 K were 0.3%×K−1 and 5.5%×K−1 in shortwave infrared (SWIR) and visible range, respectively. Synthesized luminophores can be used as dual-range optical temperature sensors, which simultaneously operate in visible and SWIR ranges