54 research outputs found

    Analysis of Adverse Events of Cholinesterase Inhibitors and NMDA Receptor Antagonists on Arrhythmias Using the Japanese Adverse Drug Event Report Database

    No full text
    Abstract Background The association between anti-dementia drugs and arrhythmia is uncertain. In addition, the effects of certain drug combinations are not yet well known. Objective We investigated the association between anti-dementia drugs and arrhythmia. Furthermore, we investigated the effects of anti-dementia drugs both alone and in combination on the likelihood of arrhythmia in patients with dementia. Methods We examined the Japanese Adverse Drug Event Report database (JADER) from April 2004 to May 2022 for dementia drug users aged ≥ 60 years. We calculated the unadjusted reported odds ratio (ROR) and adjusted ROR for confounding factors. Furthermore, we examined the association of various combinations of anti-dementia drugs with the development of arrhythmias. Results There were 6718 arrhythmia cases identified out of 333,702 reported cases. The unadjusted ROR results were as follows: donepezil alone (ROR 4.39, 95% confidence interval [CI] 3.89–4.95), rivastigmine alone (2.10, 1.53–2.87), galantamine alone (3.87, 3.04–4.94), memantine alone (2.25, 1.59–3.20), and combination of choline esterase inhibitor and memantine (2.56, 1.84–3.57). In a multivariate analysis, the RORs remained significant. Conclusions Regardless of whether anti-dementia drugs were used alone or in combination, attention should be paid to the occurrence of arrhythmias

    The Effect of Sodium-Dependent Glucose Cotransporter 2 Inhibitor Tofogliflozin on Neurovascular Coupling in the Retina in Type 2 Diabetic Mice

    No full text
    We investigated the effect of tofogliflozin, a sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i), on retinal blood flow dysregulation, neural retinal dysfunction, and the impaired neurovascular coupling in type 2 diabetic mice. Tofogliflozin was added to mouse chow to deliver 5 mg/kg/day and 6-week-old mice were fed for 8 weeks. The longitudinal changes in the retinal neuronal function and blood flow responses to systemic hyperoxia and flicker stimulation were evaluated every 2 weeks in diabetic db/db mice that received tofogliflozin (n =6) or placebo (n = 6) from 8 to 14 weeks of age. We also evaluated glial activation and vascular endothelial growth factor (VEGF) expression by immunofluorescence. Tofogliflozin treatment caused a sustained decrease in blood glucose in db/db mice from 8 weeks of the treatment. In tofogliflozin-treated db/db mice, both responses improved from 8 to 14 weeks of age, compared with vehicle-treated diabetic mice. Subsequently, the electroretinography implicit time for the oscillatory potential was significantly improved in SGLT2i-treated db/db mice. The systemic tofogliflozin treatment prevented the activation of glial fibrillary acidic protein and VEGF protein expression, as detected by immunofluorescence. Our results suggest that glycemic control with tofogliflozin significantly improved the impaired retinal neurovascular coupling in type 2 diabetic mice with the inhibition of retinal glial activation

    Fenofibrate Nano-Eyedrops Ameliorate Retinal Blood Flow Dysregulation and Neurovascular Coupling in Type 2 Diabetic Mice

    No full text
    We investigated the effect of fenofibrate nano-eyedrops (FenoNano) on impaired retinal blood flow regulation in type 2 diabetic mice. Six-week-old db/db mice were randomly divided into an untreated group (n = 6) and treated group, which received FenoNano (n = 6). The longitudinal changes in retinal neuronal function and blood flow responses to systemic hyperoxia and flicker stimulation were evaluated every 2 weeks in diabetic db/db mice treated with FenoNano (n = 6) or the vehicle (n = 6) from ages 8–14 weeks. The retinal blood flow was assessed using laser speckle flowgraphy. We also evaluated the expressions of vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), and aquaporin 4 (AQP4) and the phosphorylation of peroxisome proliferator-activated receptor alpha (PPAR-α) by immunofluorescence. In db/db mice treated with FenoNano, both responses were restored from 8 to 14 weeks of age compared with the diabetic mice treated with the vehicle. At 14 weeks of age, the impaired regulation of retinal blood flow during systemic hyperoxia and flicker stimulation improved to about half of that in the db/db mice treated with FenoNano compared with the db/m control group (n = 5). FenoNano prevented the activation of VEGF and GFAP expression and increased the AQP4 expression and the phosphorylation of PPAR-α detected by immunofluorescence compared with the diabetic mice treated with the vehicle eyedrop. Our results suggested that the fenofibrate nano-eyedrops prevent retinal glial dysfunction via the phosphorylation of PPAR-α and improves the retinal blood flow dysregulation in type 2 diabetic mice

    Comparisons between dipeptidyl peptidase-4 inhibitors and other classes of hypoglycemic drugs using two distinct biomarkers of pancreatic beta-cell function: A meta-analysis.

    No full text
    Background and objectiveDipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have pancreatic beta-cell preserving effect according to studies using homeostatic model of assessment for beta-cell function (HOMA-β). However, whether HOMA-β is a suitable biomarker for comparisons between hypoglycemic drugs with different mechanisms of action remains unclear. Therefore, we conducted a meta-analysis to compare the effects of DPP-4 inhibitors and other classes of hypoglycemic drugs on HOMA-β and proinsulin-to-insulin ratio (PIR).MethodsWe searched MEDLINE, CENTRAL, and Ichushi-web for the period of 1966 to May 2020. We collected randomized, controlled clinical trials in patients with type 2 diabetes mellitus comparing DPP-4 inhibitors and other classes of hypoglycemic agents [α-glucosidase inhibitors (α-GIs), glucagon-like peptide-1 (GLP-1) analogues, metformin, sodium-glucose cotransporter 2 (SGLT2) inhibitors, sulfonylureas, or thiazolidinediones]. Weighted mean differences and 95% confidence intervals of changes in HOMA-β or PIR during study periods were calculated for pairwise comparisons.ResultsThirty-seven and 21 relevant trials were retrieved for comparisons of HOMA-β and PIR, respectively. HOMA-β and PIR consistently showed superiority of DPP-4 inhibitors compared with α-GIs. Both biomarkers consistently supported inferiority of DPP-4 inhibitors compared with GLP-1 analogues. However, PIR showed inferiority of DPP-4 inhibitors compared with metformin, and superiority compared with SGLT2 inhibitors, whereas HOMA-β showed no significant differences between DPP-4 inhibitors and the two other agents.ConclusionDPP-4 inhibitors appear to be superior to α-GIs but inferior to GLP-1 analogues in preservation of beta-cell function assessed by either HOMA-β or PIR. DPP-4 inhibitors seem to be superior to SGLT2 inhibitors but inferior to metformin on islet function assessed only by PIR. Because HOMA-β and PIR may indicate different aspects of beta-cell function, results of beta-cell function preserving effects of hypoglycemic agents should be interpreted with caution

    Xanthine Oxidase Inhibitor Febuxostat Exerts an Anti-Inflammatory Action and Protects against Diabetic Nephropathy Development in KK-Ay Obese Diabetic Mice

    No full text
    Hyperuricemia has been recognized as a risk factor for insulin resistance as well as one of the factors leading to diabetic kidney disease (DKD). Since DKD is the most common cause of end-stage renal disease, we investigated whether febuxostat, a xanthine oxidase (XO) inhibitor, exerts a protective effect against the development of DKD. We used KK-Ay mice, an established obese diabetic rodent model. Eight-week-old KK-Ay mice were provided drinking water with or without febuxostat (15 μg/mL) for 12 weeks and then subjected to experimentation. Urine albumin secretion and degrees of glomerular injury judged by microscopic observations were markedly higher in KK-Ay than in control lean mice. These elevations were significantly normalized by febuxostat treatment. On the other hand, body weights and high serum glucose concentrations and glycated albumin levels of KK-Ay mice were not affected by febuxostat treatment, despite glucose tolerance and insulin tolerance tests having revealed febuxostat significantly improved insulin sensitivity and glucose tolerance. Interestingly, the IL-1β, IL-6, MCP-1, and ICAM-1 mRNA levels, which were increased in KK-Ay mouse kidneys as compared with normal controls, were suppressed by febuxostat administration. These data indicate a protective effect of XO inhibitors against the development of DKD, and the underlying mechanism likely involves inflammation suppression which is independent of hyperglycemia amelioration

    Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins

    No full text
    Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine–choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor β (TGF-β) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis

    Prolyl Isomerase Pin1 Suppresses Thermogenic Programs in Adipocytes by Promoting Degradation of Transcriptional Co-activator PRDM16

    No full text
    Summary: Non-shivering thermogenesis in adipocytes provides defense against low temperatures and obesity development, but the underlying regulatory mechanism remains to be fully clarified. Based on both markedly increased Pin1 expression in states of excess nutrition and resistance to obesity development in Pin1 null mice, we speculated that adipocyte Pin1 may play a role in thermogenic programs. Adipose-specific Pin1 knockout (adPin1 KO) mice showed enhanced transcription of thermogenic genes and tolerance to hypothermia when exposed to cold. In addition, adPin1 KO mice were resistant to high-fat diet-induced obesity and glucose intolerance. A series of experiments revealed that Pin1 binds to PRDM16 and thereby promotes its degradation through the ubiquitin-proteasome system. Consistent with these results, Pin1 deletion in differentiated adipocytes showed enhancement of thermogenic programs in response to the β3 agonist CL316243 through the upregulation of PRDM16 proteins. These observations indicate that Pin1 is a negative regulator of non-shivering thermogenesis. : Adipose Pin1 expression increases in obese mice. Pin1 associates with PRDM16 and promotes its degradation, resulting in the downregulation of UCP-1. Pin1 KO mice are resistant to obesity development and cold exposure-induced hypothermia. Thus, Pin1 is a negative regulator of thermogenesis and could be a target of obesity. Keywords: Pin1, PRDM16, UCP-1, thermogenesis, obesit

    Serum uric acid is an independent predictor of new-onset diabetes after living-donor kidney transplantation

    No full text
    Abstract Background We investigated whether serum uric acid (SUA) levels before kidney transplantation predict new-onset diabetes after kidney transplantation (NODAT) and compared SUA levels with known risk factors for NODAT by prospective cohort study. Methods A total of 151 adult kidney recipients without diabetes (84 men, 67 women) who underwent living-donor kidney transplantation between 2001 and 2011 were followed in this study. The Cox proportional hazards model was used to analyse the risk of NODAT. Results During the follow-up period (median 3.3 years, range 0–10 years), 32 (21.2%) adult kidney recipients without diabetes developed NODAT, and an incidence rate was 5.6 per 100 person-years and a 10-year cumulative incidence of 26.9%. When subjects were stratified by SUA levels into tertiles, the patients in the highest tertile (> 8.6 mg/dl for men, > 7.7 mg/dl for women) had a significantly higher risk of NODAT than the patients in the lower 2 tertiles (log-rank test, P = 0.03). In the univariate analysis, increased level of SUA was associated with NODAT (hazard ratio 1.27 [95% CI 1.04–1.55], P = 0.01). In the multivariate analysis, increased level of SUA was significantly associated with NODAT after correction by any factors, e.g. (age, sex, family history of diabetes, BMI, HbA1c, serum creatinine, tacrolimus, HCV) factors directly affecting the SUA value (1.26 [1.02–1.56], P = 0.03), risk factors for T2DM onset (1.34 [1.10–1.64], P = 0.03), and factors previously reported risk factors for NODAT (1.36 [1.11–1.66], P = 0.003). Conclusion SUA independently predicts NODAT in living-donor kidney transplantation patients

    The Xanthine Oxidase Inhibitor Febuxostat Suppresses the Progression of IgA Nephropathy, Possibly via Its Anti-Inflammatory and Anti-Fibrotic Effects in the gddY Mouse Model

    No full text
    Recent clinical studies have demonstrated the protective effect of xanthine oxidase (XO) inhibitors against chronic kidney diseases, although the underlying molecular mechanisms remain unclear. However, to date, neither clinical nor basic research has been carried out to elucidate the efficacy of XO inhibitor administration for IgA nephropathy. We thus investigated whether febuxostat, an XO inhibitor, exerts a protective effect against the development of IgA nephropathy, using gddY mice as an IgA nephropathy rodent model. Eight-week-old gddY mice were provided drinking water with (15 μg/mL) or without febuxostat for nine weeks and then subjected to experimentation. Elevated serum creatinine and degrees of glomerular sclerosis and fibrosis, judged by microscopic observations, were significantly milder in the febuxostat-treated than in the untreated gddY mice, while body weights and serum IgA concentrations did not differ between the two groups. In addition, elevated mRNA levels of inflammatory cytokines such as TNFα, MCP-1, IL-1β, and IL-6, collagen isoforms and chemokines in the gddY mouse kidneys were clearly normalized by the administration of febuxostat. These data suggest a protective effect of XO inhibitors against the development of IgA nephropathy, possibly via suppression of inflammation and its resultant fibrotic changes, without affecting the serum IgA concentration

    Roles of Gut-Derived Secretory Factors in the Pathogenesis of Non-Alcoholic Fatty Liver Disease and Their Possible Clinical Applications

    No full text
    The rising prevalence of non-alcoholic fatty liver disease (NAFLD) parallels the global increase in the number of people diagnosed with obesity and metabolic syndrome. The gut-liver axis (GLA) plays an important role in the pathogenesis of NAFLD/non-alcoholic steatohepatitis (NASH). In this review, we discuss the clinical significance and underlying mechanisms of action of gut-derived secretory factors in NAFLD/NASH, focusing on recent human studies. Several studies have identified potential causal associations between gut-derived secretory factors and NAFLD/NASH, as well as the underlying mechanisms. The effects of gut-derived hormone-associated drugs, such as glucagon-like peptide-1 analog and recombinant variant of fibroblast growth factor 19, and other new treatment strategies for NAFLD/NASH have also been reported. A growing body of evidence highlights the role of GLA in the pathogenesis of NAFLD/NASH. Larger and longitudinal studies as well as translational research are expected to provide additional insights into the role of gut-derived secretory factors in the pathogenesis of NAFLD/NASH, possibly providing novel markers and therapeutic targets in patients with NAFLD/NASH
    corecore