194 research outputs found

    Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment

    Get PDF
    Background The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of cell growth and survival signaling as well transformation induced by multiple tyrosine kinase oncogenes. Since the basal-like and triple-negative breast cancer (BTBC) is characterized by dysregulation of multiple tyrosine kinase oncogenes, we wanted to determine the importance of SHP2 in BTBC cell lines. Methods Short hairpin RNA-based and dominant-negative expression-based SHP2 inhibition techniques were used to interrogate the functional importance of SHP2 in BTBC cell biology. In addition, cell viability and proliferation assays were used to determine hormone dependency for growth and sensitivity to anti-estrogen treatment. Results We show that inhibition of SHP2 in BTBC cells induces luminal-like epithelial morphology while suppressing the mesenchymal and invasive property. We have termed this process as basal-to-luminal transition (BLT). The occurrence of BLT was confirmed by the loss of the basal marker alpha smooth muscle actin and the acquisition of the luminal marker cytokeratin 18 (CK18) expression. Furthermore, the occurrence of BLT led to estrogen receptor alpha (ERΞ±) expression, hormone dependency, and sensitivity to tamoxifen treatment. Conclusions Our data show that inhibition of SHP2 induces BLT, ERΞ± expression, dependency on estrogen for growth, and sensitivity to anti-hormone therapy. Therefore, inhibition of SHP2 may provide a therapeutic benefit in basal-like and triple-negative breast cancer

    SHP2 Acts Both Upstream and Downstream of Multiple Receptor Tyrosine Kinases to Promote Basal-like and Triple-Negative Breast Cancer

    Get PDF
    Introduction: Dysregulated receptor tyrosine kinase (RTK) signaling is a common occurrence in basal-like and triple-negative breast cancer (BTBC). As a result, RTK-targeting therapies have been initiated but proved difficult, mainly owing to the multiplicity of dysregulated RTKs. Hence, targeting master regulators of RTK signaling might alleviate this obstacle. Before that, however, defining the mechanism of such molecules is required. In this report, we show that the Src homology phosphotyrosyl phosphatase 2 (SHP2) is a master regulator of RTK expression and signaling in BTBC. Methods: Xenograft tumor growth studies were used to determine the effect of SHP2 inhibition on tumorigenesis and/or metastasis. Cell proliferation rate, anchorage-independent growth, mammosphere formation, and ALDEFLUOR assays were used to compare the relative functional importance of SHP2 and the epidermal growth factor receptor (EGFR) in BTBC cells. Immunohistochemistry and immunofluorescence analyses were used to determine the state of SHP2 and EGFR coexpression in BTBC. Analysis of mitogenic and cell survival signaling was performed to show SHP2’s role in signaling by multiple RTKs. Results: Inhibition of SHP2 in BTBC cells suppresses their tumorigenic and metastatic properties. Because EGFR is the most commonly dysregulated RTK in BTBC, we first tested the effect of SHP2 inhibition on EGFR signaling and found that SHP2 is important not only for mediation of the Ras/extracellular signal-regulated kinase and the phosphatidyl inositol 3-kinase/Akt signaling pathways but also for the expression of the receptor itself. The existence of a tight association between SHP2 and EGFR expression in tumors and cell lines further suggested the importance of SHP2 in EGFR expression. Comparison of relative biological significance showed the superiority of SHP2 inhibition over that of EGFR, suggesting the existence of additional RTKs regulated by SHP2. Indeed, we found that the expression as well as the signaling efficiency of c-Met and fibroblast growth factor receptor 1, two other RTKs known to be dysregulated in BTBC, are SHP2-dependent. To our knowledge, this is the first demonstration of SHP2 acting both upstream and downstream of RTKs to promote signaling. Conclusions: SHP2 upregulates the expression and signaling of multiple RTKs to promote BTBC. These findings provide a mechanistic explanation for the superiority of SHP2 inhibition in BTBC

    Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer

    Get PDF
    The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies

    First Discovery of a Fast Radio Burst at 350 MHz by the GBNCC Survey

    Get PDF
    We report the first discovery of a fast radio burst (FRB), FRB 20200125A, by the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey conducted with the Green Bank Telescope at 350 MHz. FRB 20200125A was detected at a Galactic latitude of 58.43 degrees with a dispersion measure of 179 pc cmβˆ’3^{-3}, while electron density models predict a maximum Galactic contribution of 25 pc cmβˆ’3^{-3} along this line of sight. Moreover, no apparent Galactic foreground sources of ionized gas that could account for the excess DM are visible in multi-wavelength surveys of this region. This argues that the source is extragalactic. The maximum redshift for the host galaxy is zmax=0.17z_{max}=0.17, corresponding to a maximum comoving distance of approximately 750 Mpc. The measured peak flux density for FRB 20200125A is 0.37 Jy, and we measure a pulse width of 3.7 ms, consistent with the distribution of FRB widths observed at higher frequencies. Based on this detection and assuming an Euclidean flux density distribution of FRBs, we calculate an all-sky rate at 350 MHz of 3.4βˆ’3.3+15.4Γ—1033.4^{+15.4}_{-3.3} \times 10^3 FRBs skyβˆ’1^{-1} dayβˆ’1^{-1} above a peak flux density of 0.42 Jy for an unscattered pulse having an intrinsic width of 5 ms, consistent with rates reported at higher frequencies. Given the recent improvements in our single-pulse search pipeline, we also revisit the GBNCC survey sensitivity to various burst properties. Finally, we find no evidence of interstellar scattering in FRB 20200125A, adding to the growing evidence that some FRBs have circumburst environments where free-free absorption and scattering are not significant.Comment: 15 pages, 6 figures, Submitted to Ap

    Phosphoproteomics-Based Modeling Defines the Regulatory Mechanism Underlying Aberrant EGFR Signaling

    Get PDF
    BACKGROUND: Mutation of the epidermal growth factor receptor (EGFR) results in a discordant cell signaling, leading to the development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational network modeling. METHODOLOGY/PRINCIPAL FINDINGS: Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992), one of the multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics. CONCLUSIONS/SIGNIFICANCE: Our integrative approach provided a mechanistic description of the disorders of mutated EGFR signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell signaling

    FGFR3, HRAS, KRAS, NRAS and PIK3CA Mutations in Bladder Cancer and Their Potential as Biomarkers for Surveillance and Therapy

    Get PDF
    Background: Fifty percent of patients with muscle-invasive bladder cancer (MI-BC) die from their disease and current chemotherapy treatment only marginally increases survival. Novel therapies targeting receptor tyrosine kinases or activated oncogenes may improve outcome. Hence, it is necessary to stratify patients based on mutations in relevant oncogenes. Patients with non-muscle-invasive bladder cancer (NMI-BC) have excellent survival, however two-thirds develop recurrences. Tumor specific mutations can be used to detect recurrences in urine assays, presenting a more patient-friendly diagnostic procedure than cystoscopy. Methodology/Principal Findings: To address these issues, we developed a mutation assay for the simultaneous detection of 19 possible mutations in the HRAS, KRAS, and NRAS genes. With this assay and mutation assays for the FGFR3 and PIK3CA oncogenes, we screened primary bladder tumors of 257 patients and 184 recurrences from 54 patients. Additionally, in primary tumors p53 expression was obtained by immunohistochemistry. Of primary tumors 64% were mutant for FGFR3, 11% for RAS, 24% for PIK3CA, and 26% for p53. FGFR3 mutations were mutually exclusive with RAS mutations (p = 0.001) and co-occurred with PIK3CA mutations (p = 0.016). P53 overexpression was mutually exclusive with PIK3CA and FGFR3 mutations (p≀0.029). Mutations in the RAS and PIK3CA genes were not predictors for recurrence-free, progression-free and disease-specific survival. In patients presenting with NMI-BC grade 3 and MI-BC, 33 and 36% of the primary tumors were mutant. In patients with low-grade NMI-BC, 88% of the primary tumors carried a mutation and 88% of the recurrences were mutant. Conclusions/Significance: The mutation assays present a companion diagnostic to define patients for targeted therapies. In addition, the assays are a potential biomarker to detect recurrences during surveillance. We showed that 88% of patients presenting with low-grade NMI-BC are eligible for such a follow-up. This may contribute to a reduction in the number of cystoscopical examinations

    How to Detect an Astrophysical Nanohertz Gravitational Wave Background

    Get PDF
    \ua9 2023. The Author(s). Published by the American Astronomical Society.Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them

    The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background

    Full text link
    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational wave background (GWB) in its 15 yr dataset. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy, and place a Bayesian 95%95\% upper limit on the level of broadband anisotropy such that (Cl>0/Cl=0)<20%(C_{l>0} / C_{l=0}) < 20\%. We also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems using astrophysical simulations conditioned on the isotropic GWB inferred in the 15-yr dataset, and show that this dataset has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data.Comment: 19 pages, 11 figures; submitted to Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]
    • …
    corecore