362 research outputs found

    Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes:An Individual-Participant Data Meta-Analysis

    No full text
    Importance: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. Objective: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. Design, Setting, and Participants: Individual-participant data meta-analysis of 27503140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9067753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. Exposures: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). Main Outcomes and Measures: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. Results: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2(SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2(SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2(adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). Conclusions and Relevance: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations.</p

    sj-docx-1-cjk-10.1177_20543581241228731 – Supplemental material for Oral Nutritional Supplement Prescription and Patient-Reported Symptom Burden Among Patients With Late-Stage Non-Dialysis Chronic Kidney Disease

    No full text
    Supplemental material, sj-docx-1-cjk-10.1177_20543581241228731 for Oral Nutritional Supplement Prescription and Patient-Reported Symptom Burden Among Patients With Late-Stage Non-Dialysis Chronic Kidney Disease by Michelle M. Y. Wong, Yuyan Zheng, Bingyue Zhu, Lee Er, Mohammad Atiquzzaman, Alexandra Romann, Dani Renouf, Zainab Sheriff and Adeera Levin in Canadian Journal of Kidney Health and Disease</p

    Identifying Barriers and Facilitators for Increasing Uptake of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors in British Columbia, Canada, using the Consolidated Framework for Implementation Research

    No full text
    Background: Care gaps remain in modern health care despite the availability of robust, evidence-based medications. Although sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated profound benefits in improving both cardiovascular and kidney outcomes in patients, the uptake of these medications remain suboptimal, and the causes have not been systematically explored. Objective: The purpose of this study was to use the Consolidated Framework for Implementation Research (CFIR) to describe the barriers and facilitators faced by clinicians in British Columbia, Canada, when prescribing an SGLT2 inhibitor. To achieve this, we conducted semistructured interviews using the CFIR with practicing family physicians, nephrologists, endocrinologists, and cardiologists in British Columbia. Design: Semistructured interviews. Setting: British Columbia, Canada. Participants: Actively practicing family physicians, nephrologists, endocrinologists, and cardiologists in British Columbia. Methods: Twenty-one clinicians were interviewed using questions derived from the CFIR. The audio recordings were transcribed verbatim, and each transcription was individually analyzed in duplicate using thematic analysis. The analysis focused on identifying barriers and facilitators to using SGLT2 inhibitors in clinical practice and coded using the CFIR constructs. Once the transcriptions were coded, overarching themes were created. Results: Five overarching themes were identified to the barriers and facilitators to using SGLT2 inhibitors: current perceptions and beliefs, clinician factors, patient factors, medication factors, and health care system factors. The current perceptions and beliefs were that SGLT2 inhibitors are efficacious and have distinct advantages over other agents but are underutilized in British Columbia. Clinician factors included varying levels of knowledge of and comfort in prescribing SGLT2 inhibitors, and patient factors included intolerable adverse events and additional pill burden, but many were enthusiastic about potential benefits. Multiple SGLT2 inhibitor related adverse events like mycotic infections and euglycemic diabetic ketoacidosis and the difficulty in obtaining reimbursement for these medications were also identified as a barrier to prescribing these medications. Facilitators for the use of SGLT2 inhibitors included consensus among colleagues, influential leaders, and peers in support of their use, and endorsement by national guidelines. Limitations: The experience from the clinicians regarding costs and the reimbursement process is limited to British Columbia as each province has its own procedures. There may be responder bias as clinicians were approached through purposive sampling. Conclusion: This study highlights different themes to the barriers and facilitators of using SGLT2 inhibitors in British Columbia. The identification of these barriers provides a specific target for improvement, and the facilitators can be leveraged for the increased use of SGLT2 inhibitors. Efforts to address and optimize these barriers and facilitators in a systematic approach may lead to an increase in the use of these efficacious medications

    sj-docx-1-cjk-10.1177_20543581231160511 – Supplemental material for Determining the Longitudinal Serologic Response to COVID-19 Vaccination in the Chronic Kidney Disease Population: A Clinical Research Protocol

    No full text
    Supplemental material, sj-docx-1-cjk-10.1177_20543581231160511 for Determining the Longitudinal Serologic Response to COVID-19 Vaccination in the Chronic Kidney Disease Population: A Clinical Research Protocol by Kevin Yau, Omosomi Enilama, Adeera Levin, Marc G. Romney, Joel Singer, Peter Blake, Jeffrey Perl, Jerome A. Leis, Robert Kozak, Hubert Tsui, Shelly Bolotin, Vanessa Tran, Christopher T. Chan, Paul Tam, Miten Dhruve, Christopher Kandel, Jose Estrada-Codecido, Tyler Brown, Aswani Siwakoti, Kento T. Abe, Queenie Hu, Karen Colwill, Anne-Claude Gingras, Matthew J. Oliver and Michelle A. Hladunewich in Canadian Journal of Kidney Health and Disease</p

    Regional variation in hemoglobin distribution among individuals with chronic kidney disease: the ISN International Network of Chronic Kidney Disease (iNET-CKD) Cohorts

    Get PDF
    Introduction: Despite recognized geographic and sex-based differences in hemoglobin in the general population, these factors are typically ignored in patients with chronic kidney disease (CKD) in whom a single therapeutic range for hemoglobin is recommended. We sought to compare the distribution of hemoglobin across international nondialysis CKD populations and evaluate predictors of hemoglobin.Methods: In this cross-sectional study, hemoglobin distribution was evaluated in each cohort overall and stratified by sex and estimated glomerular filtration rate (eGFR). Relationships between candidate predictors and hemoglobin were assessed from linear regression models in each cohort. Estimates were subsequently pooled in a random effects model.Results: A total of 58,613 participants from 21 adult cohorts (median eGFR range of 17–49 ml/min) and 3 pediatric cohorts (median eGFR range of 26–45 ml/min) were included with broad geographic representation. Hemoglobin values varied substantially among the cohorts, overall and within eGFR categories, with particularly low mean hemoglobin observed in women from Asian and African cohorts. Across the eGFR range, women had a lower hemoglobin compared to men, even at an eGFR of 15 ml/min (mean difference 5.3 g/l, 95% confidence interval [CI] 3.7–6.9). Lower eGFR, female sex, older age, lower body mass index, and diabetic kidney disease were all independent predictors of a lower hemoglobin value; however, this only explained a minority of variance (R2 7%–44% across cohorts).Conclusion: There are substantial regional differences in hemoglobin distribution among individuals with CKD, and the majority of variance is unexplained by demographics, eGFR, or comorbidities. These findings call for a renewed interest in improving our understanding of hemoglobin determinants in specific CKD populations.</p

    Major cardiovascular events and subsequent risk of kidney failure with replacement therapy:a CKD Prognosis Consortium study

    Get PDF
    Aims: Chronic kidney disease (CKD) increases risk of cardiovascular disease (CVD). Less is known about how CVD associates with future risk of kidney failure with replacement therapy (KFRT). Methods and results: The study included 25 903 761 individuals from the CKD Prognosis Consortium with known baseline estimated glomerular filtration rate (eGFR) and evaluated the impact of prevalent and incident coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) events as time-varying exposures on KFRT outcomes. Mean age was 53 (standard deviation 17) years and mean eGFR was 89 mL/min/1.73 m2, 15% had diabetes and 8.4% had urinary albumin-to-creatinine ratio (ACR) available (median 13 mg/g); 9.5% had prevalent CHD, 3.2% prior stroke, 3.3% HF, and 4.4% prior AF. During follow-up, there were 269 142 CHD, 311 021 stroke, 712 556 HF, and 605 596 AF incident events and 101 044 (0.4%) patients experienced KFRT. Both prevalent and incident CVD were associated with subsequent KFRT with adjusted hazard ratios (HRs) of 3.1 [95% confidence interval (CI): 2.9–3.3], 2.0 (1.9–2.1), 4.5 (4.2–4.9), 2.8 (2.7–3.1) after incident CHD, stroke, HF and AF, respectively. HRs were highest in first 3 months post-CVD incidence declining to baseline after 3 years. Incident HF hospitalizations showed the strongest association with KFRT [HR 46 (95% CI: 43–50) within 3 months] after adjustment for other CVD subtype incidence. Conclusion: Incident CVD events strongly and independently associate with future KFRT risk, most notably after HF, then CHD, stroke, and AF. Optimal strategies for addressing the dramatic risk of KFRT following CVD events are needed

    Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes. An Individual-Participant Data Meta-Analysis

    Get PDF
    IMPORTANCE: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. OBJECTIVE: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. DESIGN, SETTING, AND PARTICIPANTS: Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. EXPOSURES: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). MAIN OUTCOMES AND MEASURES: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. RESULTS: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations

    Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes: An Individual-Participant Data Meta-Analysis

    Full text link
    Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US.To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes.Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021.The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR).The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses.Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]).In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations. Importance Objective Design, setting, and participants Exposures Main outcomes and measures Results Conclusions and relevance</h4

    Humoral Responses in the Omicron Era Following 3-Dose SARS-CoV-2 Vaccine Series in Kidney Transplant Recipients

    No full text
    Background. Kidney transplant recipients (KTRs) have a diminished response to SARS-CoV-2 vaccination compared with immunocompetent individuals. Deeper understanding of antibody responses in KTRs following third-dose vaccination would enable identification of those who remain unprotected against Omicron. Methods. We profiled antibody responses in KTRs pre- and at 1 and 3 mo post-third-dose SARS-CoV-2 mRNA-based vaccine. Binding antibody levels were determined by ELISA. Neutralization against wild type, Beta, Delta, and Omicron (BA.1) variants was determined using a SARS-CoV-2 spike-pseudotyped lentivirus assay. Results. Forty-four KTRs were analyzed at 1 and 3 mo (n = 26) post-third dose. At 1 mo, the proportion of participants with a robust antibody response had increased significantly from baseline, but Omicron-specific neutralizing antibodies were detected in just 45% of KTRs. Median binding antibody levels declined at 3 mo, but the proportion of KTRs with a robust antibody response was unchanged; 38.5% KTRs maintained Omicron-specific neutralization at 3 mo. No clinical variables were significantly associated with Omicron-neutralizing antibodies, but antireceptor binding domain titers appeared to identify those with Omicron-specific neutralizing capacity. Conclusions. Over 50% of KTRs lack Omicron-specific neutralization capacity 1 mo post-third mRNA-vaccine dose. Antibody levels of responders were well preserved at 3 mo. Anti receptor binding domain antibody titers may identify patients with a detectable Omicron-neutralizing antibody response
    corecore