77 research outputs found

    How does comorbidity affect cost of health care in patients with irritable bowel syndrome? A cohort study in general practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Irritable bowel syndrome (IBS) is associated with other disorders (comorbidity), reduced quality of life and increased use of health resources. We aimed to explore the impact of comorbidity on cost of health care in patients with IBS in general practice.</p> <p>Methods</p> <p>In this cohort study 208 consecutive patients with IBS (Rome II) were recruited. Sociodemographic data, IBS symptoms, and comorbidity (somatic symptoms, organic diseases and psychiatric disorders) were assessed at baseline. Based on a follow up interview after 6-9 months and use of medical records, IBS and non-IBS related health resource use were measured as consultations, hospitalisations, use of medications and alternative health care products and sick leave days. Costs were calculated by national tariffs and reported in Norwegian Kroner (NOK, 1 EURO equals 8 NOK). Multivariate analyses were performed to identify predictors of costs.</p> <p>Results</p> <p>A total of 164 patients (mean age 52 years, 69% female, median duration of IBS 17 years) were available at follow up, 143 patients (88%) had consulted their GP of whom 31 (19%) had consulted for IBS. Mean number of sick- leave days for IBS and comorbidity were 1.7 and 16.3 respectively (p < 0.01), costs related to IBS and comorbidity were 954 NOK and 14854 NOK respectively (p < 0.001). Age, organic diseases and somatic symptoms, but not IBS severity, were significant predictors for total costs.</p> <p>Conclusion</p> <p>Costs for health resource use among patients with IBS in general practice were largely explained by comorbidity, which generated ten times the costs for IBS.</p

    Measurement of health-related quality by multimorbidity groups in primary health care

    Full text link
    [EN] Background: Increased life expectancy in Western societies does not necessarily mean better quality of life. To improve resources management, management systems have been set up in health systems to stratify patients according to morbidity, such as Clinical Risk Groups (CRG). The main objective of this study was to evaluate the effect of multimorbidity on health-related quality of life (HRQL) in primary care. Methods: An observational cross-sectional study, based on a representative random sample (n = 306) of adults from a health district (N = 32,667) in east Spain (Valencian Community), was conducted in 2013. Multimorbidity was measured by stratifying the population with the CRG system into nine mean health statuses (MHS). HRQL was assessed by EQ-5D dimensions and the EQ Visual Analogue Scale (EQ VAS). The effect of the CRG system, age and gender on the utility value and VAS was analysed by multiple linear regression. A predictive analysis was run by binary logistic regression with all the sample groups classified according to the CRG system into the five HRQL dimensions by taking the ÂżhealthyÂż group as a reference. Multivariate logistic regression studied the joint influence of the nine CRG system MHS, age and gender on the five EQ-5D dimensions. Results: Of the 306 subjects, 165 were female (mean age of 53). The most affected dimension was pain/discomfort (53%), followed by anxiety/depression (42%). The EQ-5D utility value and EQ VAS progressively lowered for the MHS with higher morbidity, except for MHS 6, more affected in the five dimensions, save self-care, which exceeded MHS 7 patients who were older, and MHS 8 and 9 patients, whose condition was more serious. The CRG system alone was the variable that best explained health problems in HRQL with 17%, which rose to 21% when associated with female gender. Age explained only 4%. Conclusions: This work demonstrates that the multimorbidity groups obtained by the CRG classification system can be used as an overall indicator of HRQL. These utility values can be employed for health policy decisions based on cost-effectiveness to estimate incremental quality-adjusted life years (QALY) with routinely e-health data. Patients under 65 years with multimorbidity perceived worse HRQL than older patients or disease severity. Knowledge of multimorbidity with a stronger impact can help primary healthcare doctors to pay attention to these population groups.The authors would like to thank the Conselleria de Sanitat Universal i Sanitat PĂșblica of the Generalitat Valenciana (the Regional Valencian Health Government) for providing the study data. We would also like to thank Helen Warbuton for editing the English.MilĂĄ-Perseguer, M.; Guadalajara Olmeda, MN.; Vivas-Consuelo, D.; UsĂł-Talamantes, R. (2019). Measurement of health-related quality by multimorbidity groups in primary health care. Health and Quality of Life Outcomes. 17(8):1-10. https://doi.org/10.1186/s12955-018-1063-zS110178Ministerio de Sanidad SS, Igualdad e. Indicadores de Salud 2013. EvoluciĂłn de los indicadores del estado de salud en España y su magnitud en el contexto de la UniĂłn Europea. Madrid: Ministerio de Sanidad, Servicios Sociales e Igualdad; 2014.OECD/EU: Health at a Glance: Europe 2016 – State of Health in the EU Cycle, OECD Publishing, Paris. In.; 2016.WHO: Disability and health. In. Edited by WHO; 2017.Nicholson K, Makovski TT, Griffith LE, Raina P, Stranges S, van den Akker M. Multimorbidity and comorbidity revisited: refining the concepts for international health research. J Clin Epidemiol. 2018.Palmer K, Marengoni A, Forjaz MJ, Jureviciene E, Laatikainen T, Mammarella F, Muth C, Navickas R, Prados-Torres A, Rijken M, et al. Multimorbidity care model: recommendations from the consensus meeting of the joint action on chronic diseases and promoting healthy ageing across the life cycle (JA-CHRODIS). Health Policy. 2018;122(1):4–11.WHO: Innovative Care for Chronic Conditions. Building blocks for action. In.: WHO; 2014.Fortin M, Bravo G, Hudon C, Vanasse A, Lapointe L. Prevalence of multimorbidity among adults seen in family practice. Ann Fam Med. 2005;3(3):223–8.Inoriza JM, Coderch J, Carreras M, Vall-Llosera L, Garcia-Goni M, Lisbona JM, Ibern P. Measurement of morbidity attended in an integrated health care organization. Gac Sanit. 2009;23(1):29–37.Hunger M, Thorand B, Schunk M, Döring A, Menn P, Peters A, Holle R. Multimorbidity and health-related quality of life in the older population: results from the German KORA-age study. Health Qual Life Outcomes. 2011;9:53.de Miguel P, Caballero I, Rivas FJ, Manera J, de Vicente MA, GĂłmez Á. Morbidity observed in a health area: impact on professionals and funding. Aten Primaria. 2015;47(5):301–7.Agborsangaya CB, Lau D, Lahtinen M, Cooke T, Johnson JA. Multimorbidity prevalence and patterns across socioeconomic determinants: a cross-sectional survey. BMC Public Health. 2012;12:201.Orueta JF, GarcĂ­a-Álvarez A, GarcĂ­a-Goñi M, Paolucci F, Nuño-SolinĂ­s R. Prevalence and costs of multimorbidity by deprivation levels in the Basque Country: a population based study using health administrative databases. PLoS One. 2014;9(2):e89787.Mujica-Mota RE, Roberts M, Abel G, Elliott M, Lyratzopoulos G, Roland M, Campbell J. Common patterns of morbidity and multi-morbidity and their impact on health-related quality of life: evidence from a national survey. Qual Life Res. 2015;24(4):909–18.Caballer Tarazona V, Guadalajara Olmeda N, Vivas Consuelo D, Clemente Collado A. Impact of morbidity on health care costs of a Department of Health through clinical risk groups. Valencian Community, Spain. Rev Esp Salud Publica. 2016;90:e1–e15.Calderon-Larranaga A, Abrams C, Poblador-Plou B, Weiner JP, Prados-Torres A. Applying diagnosis and pharmacy-based risk models to predict pharmacy use in Aragon, Spain: the impact of a local calibration. BMC Health Serv Res. 2010;10:22.Hughes JS, Averill RF, Eisenhandler J, Goldfield NI, Muldoon J, Neff JM, Gay JC. Clinical risk groups (CRGs): a classification system for risk-adjusted capitation-based payment and health care management. Med Care. 2004;42(1):81–90.Vivas-Consuelo D, Uso-Talamantes R, Trillo-Mata JL, Caballer-Tarazona M, Barrachina-Martinez I, Buigues-Pastor L. Predictability of pharmaceutical spending in primary health services using clinical risk groups. Health Policy. 2014;116(2–3):188–95.Milla Perseguer M, Guadalajara Olmeda N, Vivas Consuelo D. Impact of cardiovascular risk factors on the consumption of resources in primary care according to clinical risk groups. Aten Primaria. 2018.WHOQOL. The World Health Organization quality of life assessment (WHOQOL): development and general psychometric properties. Soc Sci Med. 1998;46(12):1569–85.Badia X, Carne X. The evaluation of quality of life in clinical trials. Medicina Clinica. 1998;110(14):550–6.Revicki DA. Health-related quality of life in the evaluation of medical therapy for chronic illness. J Fam Pract. 1989;29(4):377–80.Agborsangaya CB, Lau D, Lahtinen M, Cooke T, Johnson JA. Health-related quality of life and healthcare utilization in multimorbidity: results of a cross-sectional survey. Qual Life Res. 2013;22(4):791–9.Romero M, Vivas-Consuelo D, Alvis-Guzman N. Is health related quality of life (HRQoL) a valid indicator for health systems evaluation? Springerplus. 2013;2:664.Hanmer J, Feeny D, Fischhoff B, Hays RD, Hess R, Pilkonis PA, Revicki DA, Roberts MS, Tsevat J, Yu L. The PROMIS of QALYs. Health Qual Life Outcomes. 2015;13.Herdman M, Badia X, Berra S. EuroQol-5D: a simple alternative for measuring health-related quality of life in primary care. Atencion primaria / Sociedad Espanola de Medicina de Familia y Comunitaria. 2001;28(6):425–30.EuroQol G. EuroQol-a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(199–208).Agborsangaya CB, Lahtinen M, Cooke T, Johnson JA. Comparing the EQ-5D 3L and 5L: measurement properties and association with chronic conditions and multimorbidity in the general population. Health Qual Life Outcomes. 2014;12:7.Real Decreto Legislativo 8/2015, de 30 de octubre, por el que se aprueba el texto refundido de la Ley General de la Seguridad Social. In. «BOE» nĂșm. 261, de 31/10/2015.: Ministerio de Empleo y Seguridad Social.; 2015.Ministry of Health and Social Policy:. Estudios sobre la calidad de vida de pacientes afectados por determinadas patologĂ­as. [ http://www.mscbs.gob.es/organizacion/sns/planCalidadSNS/ ].Ministry of Health and Social Policy: Encuesta Nacional de Salud. España 2011/12. Calidad de vida relacionada con la salud en adultos: EQ-5D-5L. Serie Informes monogrĂĄficos n° 3. Madrid: Ministerio de Sanidad, Servicios Sociales e Igualdad; 2014.Fortin M, Bravo G, Hudon C, Lapointe L, Almirall J, Dubois MF, Vanasse A. Relationship between multimorbidity and health-related quality of life of patients in primary care. Qual Life Res. 2006;15(1):83–91.Fortin M, Dubois MF, Hudon C, Soubhi H, Almirall J. Multimorbidity and quality of life: a closer look. Health Qual Life Outcomes. 2007;5:52.Brazier JE, Yang Y, Tsuchiya A, Rowen DL. A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. Eur J Health Econ. 2010;11.Peak J, Goranitis I, Day E, Copello A, Freemantle N, Frew E. Predicting health-related quality of life (EQ-5D-5 L) and capability wellbeing (ICECAP-A) in the context of opiate dependence using routine clinical outcome measures: CORE-OM, LDQ and TOP. Health Qual Life Outcomes. 2018;16(1):106.Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-Fernandez R. Mapping the modified Rankin scale (mRS) measurement into the generic EuroQol (EQ-5D) health outcome. Med Decis Mak. 2010;30.Argimon PallĂĄs JM, JimĂ©nez Villa J: MĂ©todos de investigaciĂłn clĂ­nica y epidemiolĂłgica, vol. CapĂ­tulo 15. Tamaño de la muestra; 2013.Yepes-NĂșñez JJ, GarcĂ­a GarcĂ­a HI: Preferencias de estados de salud y medidas de utilidad. In., vol. 24. Iatreia; 2011: 365–377.Attema AE, Edelaar-Peeters Y, Versteegh MM, Stolk EA. Time trade-off: one methodology, different methods. Eur J Health Econ. 2013;14(Suppl 1):S53–64.Badia X, Roset M, Herdman M, Kind P. A comparison of United Kingdom and Spanish general population time trade-off values for EQ-5D health states. Med Decis Mak. 2001;21(1):7–16.Garin N, Olaya B, Moneta MV, Miret M, Lobo A, Ayuso-Mateos JL, Haro JM. Impact of multimorbidity on disability and quality of life in the Spanish older population. PLoS One. 2014;9(11):e111498.Mielck A, Vogelmann M, Leidl R. Health-related quality of life and socioeconomic status: inequalities among adults with a chronic disease. Health Qual Life Outcomes. 2014;12:58.UsĂł Talamantes R: AnĂĄlisis y desarrollo de un modelo predictivo del gasto farmacĂ©utico ambulatorio ajustado a morbilidad y riesgo clĂ­nico [tesis doctoral]. Universidad PolitĂ©cnica de Valencia; 2015. https://www.educacion.gob.es/teseo/mostrarRef.do?ref=1183638 .SĂĄnchez MollĂĄ M, Candela GarcĂ­a I, GĂłmez-Romero FJ, Orozco BeltrĂĄn D, Ollero Baturone M. Concordance between stratification systems and identification of patients with multiple chronic diseases in primary care. Rev Calid Asist. 2017;32(1):10–6.Vivas-Consuelo D, Uso-Talamantes R, Guadalajara-Olmeda N, Trillo-Mata J-L, Sancho-Mestre C, Buigues-Pastor L. Pharmaceutical cost management in an ambulatory setting using a risk adjustment tool. BMC Health Serv Res. 2014;14:462.Coderch J, SĂĄnchez-PĂ©rez I, Ibern P, Carreras M, PĂ©rez-Berruezo X, Inoriza JM. Predicting individual risk of high healthcare cost to identify complex chronic patients. Gac Sanit. 2014;28(4):292–300.Osca Guadalajara M, Guadalajara Olmeda N, EscartĂ­n MartĂ­nez R. Impact of Teriparatide on quality of life in osteoporotic patients. Rev Esp Salud Publica. 2015;89(2):215–25.Prazeres F, Santiago L. Relationship between health-related quality of life, perceived family support and unmet health needs in adult patients with multimorbidity attending primary care in Portugal: a multicentre cross-sectional study. Health Qual Life Outcomes. 2016;14(1):156.Brettschneider C, Leicht H, Bickel H, Dahlhaus A, Fuchs A, Gensichen J, Maier W, Group MS. Relative impact of multimorbid chronic conditions on health-related quality of life--results from the MultiCare cohort study. PLoS One. 2013;8(6):e66742

    Neuropeptide S-Mediated Facilitation of Synaptic Transmission Enforces Subthreshold Theta Oscillations within the Lateral Amygdala

    Get PDF
    The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Quality of life and cough on antihypertensive treatment: a randomised trial of eprosartan, enalapril and placebo.

    No full text
    The objective of this study was to compare the quality of life and incidence of dry cough with the angiotensin II antagonist eprosartan, the ACE-inhibitor enalapril, and placebo, in hypertensive patients with a history of ACE-inhibitor cough. The study was a multicentre, randomised, double-blind, parallel group controlled trial. A total of 136 patients judged to have ACE-inhibitor cough during single-blind enalapril treatment which was lost during a subsequent placebo washout phase, were randomised to receive either eprosartan 300 mg twice daily, or enalapril 20 mg once daily, or placebo for 6 weeks. Self-completion questionnaires assessing quality of life and cough were examined at baseline and end of study. At study end point 23% of patients in the enalapril group and 5% in the eprosartan and placebo groups reported cough (which included definite, probable and possible coughs) (P = 0.02). After adjusting for multiple comparisons, the eprosartan group was not significantly different from either placebo or enalapril. There were no significant differences in the Psychological General Wellbeing Index (PGWB). In conclusion the incidence of self-reported cough on eprosartan was similar to that on placebo, and lower than on enalapril but this difference was not significant when adjustments were made for multiple comparisons. There were no differences in quality of life