140 research outputs found

    Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?

    Get PDF
    Metabolic activity in the water column below the euphotic zone is ultimately fuelled by the vertical flux of organic material from the surface. Over time, the deep ocean is presumably at steady state, with sources and sinks balanced. But recently compiled global budgets and intensive local field studies suggest that estimates of metabolic activity in the dark ocean exceed the influx of organic substrates. This imbalance indicates either the existence of unaccounted sources of organic carbon or that metabolic activity in the dark ocean is being over-estimated. Budgets of organic carbon flux and metabolic activity in the dark ocean have uncertainties associated with environmental variability, measurement capabilities, conversion parameters, and processes that are not well sampled. We present these issues and quantify associated uncertainties where possible, using a Monte Carlo analysis of a published data set to determine the probability that the imbalance can be explained purely by uncertainties in measurements and conversion factors. A sensitivity analysis demonstrates that the bacterial growth efficiencies and assumed cell carbon contents have the greatest effects on the magnitude of the carbon imbalance. Two poorly quantified sources, lateral advection of particles and a population of slowly settling particles, are discussed as providing a means of closing regional carbon budgets. Finally, we make recommendations concerning future research directions to reduce important uncertainties and allow a better determination of the magnitude and causes of the unbalanced carbon budgets. (C) 2010 Elsevier Ltd. All rights reserved

    Celecoxib does not appear to affect prosthesis fixation in total knee replacement: A randomized study using radiostereometry in 50 patients

    Get PDF
    Background and purpose After joint replacement, a repair process starts at the interface between bone and cement. If this process is disturbed, the prosthesis may never become rigidly fixed to the bone, leading to migration—and with time, loosening. Cox-2 inhibitors are widely used as postoperative analgesics, and have adverse effects on bone healing. This could tamper prosthesis fixation. We investigated whether celecoxib, a selective Cox-2 inhibitor, increases prosthesis migration in total knee replacement (TKR)

    Baubles, Bangles, and Biotypes: A Critical Review of the use and Abuse of the Biotype Concept

    Get PDF
    Pest species of insects are notoriously prone to escape the weapons deployed in management efforts against them. This is particularly true in herbivorous insects. When a previously successful tactic fails the insect population has apparently adapted to it and is often considered to be a new or distinct entity, and given the non-formal category ‘biotype’. The entities falling under the umbrella term ‘biotype’ are not consistent either within or between biotypes, and their underlying genetic composition and origins, while generally unknown, are likely heterogeneous within and variable between biotypes. In some cases race or species may be more appropriate referents. Some examples of applications of the concept in the context of host plant resistance are discussed. It is argued here that the term ‘biotype’ and its applications are overly simplistic, confused, have not proved useful in current pest management, and lack predictive power for future management

    Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    Get PDF
    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d(-1) increase in sinking speed for a 5×10(5) ”m(3) ml(-1) increase in particle concentration, near independent on ballast type. We finally compare our observations to the literature and stress the need to generate aggregates similar to those in nature in order to get realistic estimates of the impact of ballast particles on sinking speeds

    Reconciliation of the carbon budget in the ocean’s twilight zone

    Get PDF
    Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean1, 2. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage3. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude4, 5, 6, 7, 8. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink

    Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 159 (2012): 1955-1967, doi:10.1007/s00227-012-1982-x.Many pteropod species in the eastern tropical north Pacific Ocean migrate vertically each day, transporting organic matter and respiratory carbon below the thermocline. These migrations take species into cold (15-10ÂșC) hypoxic water (< 20 ”mol O2 kg-1) at depth. We measured the vertical distribution, oxygen consumption and ammonia excretion for seven species of pteropod, some of which migrate and some which remain in oxygenated surface waters throughout the day. Within the upper 200 meters of the water column, changes in water temperature result in a ~60-75% reduction in respiration for most species. All three species tested under hypoxic conditions responded to low O2 with an additional ~35-50% reduction in respiratory rate. Combined, low temperature and hypoxia suppress the metabolic rate of pteropods by ~80-90%. These results shed light on the ways in which expanding regions of hypoxia and surface ocean warming may impact pelagic ecology.This work was funded by National Science Foundation grants to K. Wishner and B. Seibel (OCE – 0526502 and OCE – 0851043) and to K. Daly (OCE – 0526545), the University of Rhode Island, and the Rhode Island Experimental Program to Stimulate Competitive Research Fellowship program.2013-06-3

    Resupply of mesopelagic dissolved iron controlled by particulate iron composition

    Get PDF
    The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still limited due to sparse observations. There is a lack of empirical evidence as to what controls the subsurface iron remineralization due to difficulties in studying mesopelagic biogeochemistry. Here we present estimates of particulate transformations to dissolved iron, concurrent oxygen consumption and iron-binding ligand replenishment based on in situ mesopelagic experiments. Dissolved iron regeneration efficiencies (that is, replenishment over oxygen consumption) were 10- to 100-fold higher in low-dust subantarctic waters relative to higher-dust Mediterranean sites. Regeneration efficiencies are heavily influenced by particle composition. Their make-up dictates ligand release, controls scavenging, modulates ballasting and may lead to the differential remineralization of biogenic versus lithogenic iron. At high-dust sites, these processes together increase the iron remineralization length scale. Modelling reveals that in oceanic regions near deserts, enhanced lithogenic fluxes deepen the ferricline, which alter the vertical patterns of dissolved iron replenishment, and set its redistribution at the global scale. Such wide-ranging regeneration efficiencies drive different vertical patterns in dissolved iron replenishment across oceanic provinces

    ALDH1A2 (RALDH2) genetic variation in human congenital heart disease

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus.\ud \ud \ud \ud Methods\ud \ud One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay.\ud \ud \ud \ud Results\ud \ud We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls.\ud \ud \ud \ud Conclusion\ud \ud In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.Work supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 01/000090; 00/030722; 01/142381; 02/113402; 03/099982; 04/116068; 04/157044 and Conselho Nacional de Desenvolvimento Científico e Tecnológico 481872/20078. We would like to thank the careful work and thoughtful suggestions of the two reviewers responsible for the reviewing editorial process.Work supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 01/00009-0; 00/03072-2; 01/14238-1; 02/11340-2; 03/09998-2; 04/11606-8; 04/15704-4 and Conselho Nacional de Desenvolvimento Científico e Tecnológico 481872/2007-8. We would like to thank the careful work and thoughtful suggestions of the two reviewers responsible for the reviewing editorial process

    Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk

    Get PDF
    Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are ∌120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure