540 research outputs found

    High energy cosmic ray physics with underground muons in MACRO. I. Analysis methods and experimental results

    Get PDF
    In this paper, the first of a two-part work, we present the reconstruction and measurement of muon events detected underground by the MACRO experiment at Gran Sasso (E у 1.3 TeV in atmosphere͒. The main aim of this work is to discuss the muon multiplicity distribution as measured in the detector. The data sample analyzed consists of 4.4ϫ10 6 muon events, of which ϳ 263 000 are multiple muons, corresponding to a total live time of 5850 h. In this sample, the observed multiplicities extend above N ϭ35, with intermuon separations up to 50 m and beyond. Additional complementing measurements, such as the inclusive muon flux, the angular distribution, and the muon separation distribution ͑decoherence͒, are also included. The physical interpretation of the results presented here is reported in the following companion paper. ͓S0556-2821͑97͒00615-2͔ PACS number͑s͒: 13.85. Tp, 96.40.De, 96.40.Tv, 98.70.S

    The Alice Collaboration

    No full text

    The forward muon spectrometer of ALICE

    No full text

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET