3,091 research outputs found

    Nitrogen oxides in the free troposphere : Implications for tropospheric oxidants and the interpretation of satellite NO2 measurements

    Get PDF
    Satellite-based retrievals of tropospheric NO2 columns are widely used to infer NOx (gNOg+gNO2) emissions. These retrievals rely on model information for the vertical distribution of NO2. The free tropospheric background above 2gkm is particularly important because the sensitivity of the retrievals increases with altitude. Free tropospheric NOx also has a strong effect on tropospheric OH and ozone concentrations. Here we use observations from three aircraft campaigns (SEAC4RS, DC3, and ATom) and four atmospheric chemistry models (GEOS-Chem, GMI, TM5, and CAMS) to evaluate the model capabilities for simulating NOx in the free troposphere and attribute it to sources. NO2 measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry (DC3) campaigns over the southeastern U.S. in summer show increasing concentrations in the upper troposphere above 10gkm, which are not replicated by the GEOS-Chem, although the model is consistent with the NO measurements. Using concurrent NO, NO2, and ozone observations from a DC3 flight in a thunderstorm outflow, we show that the NO2 measurements in the upper troposphere are biased high, plausibly due to interference from thermally labile NO2 reservoirs such as peroxynitric acid (HNO4) and methyl peroxy nitrate (MPN). We find that NO2 concentrations calculated from the NO measurements and NO-NO2 photochemical steady state (PSS) are more reliable to evaluate the vertical profiles of NO2 in models. GEOS-Chem reproduces the shape of the PSS-inferred NO2 profiles throughout the troposphere for SEAC4RS and DC3 but overestimates NO2 concentrations by about a factor of 2. The model underestimates MPN and alkyl nitrate concentrations, suggesting missing organic NOx chemistry. On the other hand, the standard GEOS-Chem model underestimates NO observations from the Atmospheric Tomography Mission (ATom) campaigns over the Pacific and Atlantic oceans, indicating a missing NOx source over the oceans. We find that we can account for this missing source by including in the model the photolysis of particulate nitrate on sea salt aerosols at rates inferred from laboratory studies and field observations of nitrous acid (HONO) over the Atlantic. The median PSS-inferred tropospheric NO2 column density for the ATom campaign is 1.7g±g0.44g×g1014gmolec.gcm-2, and the NO2 column density simulated by the four models is in the range of 1.4-2.4g×g1014gmolec.gcm-2, implying that the uncertainty from using modeled NO2 tropospheric columns over clean areas in the retrievals for stratosphere-troposphere separation is about 1g×g1014gmolec.gcm-2. We find from GEOS-Chem that lightning is the main primary NOx source in the free troposphere over the tropics and southern midlatitudes, but aircraft emissions dominate at northern midlatitudes in winter and in summer over the oceans. Particulate nitrate photolysis increases ozone concentrations by up to 5gppbv (parts per billion by volume) in the free troposphere in the northern extratropics in the model, which would largely correct the low model bias relative to ozonesonde observations. Global tropospheric OH concentrations increase by 19g%. The contribution of the free tropospheric background to the tropospheric NO2 columns observed by satellites over the contiguous U.S. increases from 25g±g11g% in winter to 65g±g9g% in summer, according to the GEOS-Chem vertical profiles. This needs to be accounted for when deriving NOx emissions from satellite NO2 column measurements

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    Reflectance Confocal Microscopy and Electrical Impedance Spectroscopy in the Early Detection of Melanoma in Changing Lesions during Long-term Follow-up of Very High-risk Patients

    Full text link
    Electrical impedance spectroscopy has clinical relevance in diagnosing malignancy in melanocytic lesions. Sixty-eight lesions with changes during digital follow-up of patients at very high risk of developing melanoma were prospectively included in this study from February to December 2016. Electrical impedance spectroscopy and reflectance confocal microscopy were performed to evaluate their performance in this subset of difficult lesions. Forty-six lesions were considered suspicious on reflectance confocal microscopy and were excised, 19 were diagnosed as melanoma. Fifteen melanomas were detected by electrical impedance spectroscopy, while 4 received a score lower than 4, which suggested no malignancy. The addition of reflectance confocal microscopy improves accuracy while maintaining the same sensitivity. In the case of electrical impedance spectroscopy scores <4, lesions exhibiting changes in follow-up may need short-term monitoring or excision if dermoscopy shows criteria for melanoma. Results of electrical impedance spectroscopy in this subset of very early lesions should be carefully considered due to the risk of false negatives

    Probing Earth's Missing Potassium using the Unique Antimatter Signature of Geoneutrinos

    No full text
    International audienceThe formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet's potential origin and bulk composition. Direct confirmation of the Earth's internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet's natural radioactivity dominated by potassium (40K) and the decay chains of uranium (238U) and thorium (232Th). This radiogenic energy output is critical to planetary dynamics and must be accurately measured for a complete understanding of the overall heat budget and thermal history of the Earth. Detecting geoneutrinos remains the only direct probe to do so and constitutes a challenging objective in modern neutrino physics. In particular, the intriguing potassium geoneutrinos have never been observed and thus far have been considered impractical to measure. We propose here a novel approach for potassium geoneutrino detection using the unique antimatter signature of antineutrinos to reduce the otherwise overwhelming backgrounds to observing this rarest signal. The proposed detection framework relies on the innovative LiquidO detection technique to enable positron (e+) identification and antineutrino interactions with ideal isotope targets identified here for the first time. We also provide the complete experimental methodology to yield the first potassium geoneutrino discovery

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    Potential pitfalls in the use of real-world data for studying long COVID

    No full text

    Probing Earth's Missing Potassium using the Unique Antimatter Signature of Geoneutrinos

    No full text
    International audienceThe formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet's potential origin and bulk composition. Direct confirmation of the Earth's internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet's natural radioactivity dominated by potassium (40K) and the decay chains of uranium (238U) and thorium (232Th). This radiogenic energy output is critical to planetary dynamics and must be accurately measured for a complete understanding of the overall heat budget and thermal history of the Earth. Detecting geoneutrinos remains the only direct probe to do so and constitutes a challenging objective in modern neutrino physics. In particular, the intriguing potassium geoneutrinos have never been observed and thus far have been considered impractical to measure. We propose here a novel approach for potassium geoneutrino detection using the unique antimatter signature of antineutrinos to reduce the otherwise overwhelming backgrounds to observing this rarest signal. The proposed detection framework relies on the innovative LiquidO detection technique to enable positron (e+) identification and antineutrino interactions with ideal isotope targets identified here for the first time. We also provide the complete experimental methodology to yield the first potassium geoneutrino discovery
    • 

    corecore