28 research outputs found
Mid-crustal storage and crystallization of Eyjafjallajokull ankaramites, South Iceland
Our understanding of the long-term intrusive and eruptive behaviour of volcanic systems is hampered by a relatively short period of direct observation. To probe the conditions of crustal magma storage below South Iceland, we have analysed compositions of minerals, mineral zoning patterns, and melt inclusions from two Eyjafjallajokull ankaramites located at Brattaskjol and Hvammsmuli. These two units are rich in compositionally diverse macrocrysts, including the most magnesian olivine (Fo(88)(-)(90)) and clinopyroxene (Mg#(cpx)( )89.8) known from Eyjafjallajokull. Olivine-hosted spinel inclusions have high Cr# (spl )(52-80) and TiO2 (1-3 wt%) and low Al2O3 (8-22 wt%) compared to typical Icelandic chromian spinel. The spinel-olivine oxybarometer implies a moderate oxygen fugacity of Delta logFMQ 0-0.5 at the time of crystallization, and clinopyroxene-liquid thermobarometry crystallization at mid-crustal pressures (1.7-4.2 kbar, 3.0+1.4 kbar on average) at 1120-1195 degrees C. Liquid-only thermometry for melt inclusions with Mg#(melt) 56.1-68.5 and olivine-liquid thermometry for olivine macrocrysts with Fo(80.7-88.9) yield crystallization temperatures of 1155-1222 degrees C and 1136-1213 degrees C, respectively. Diffusion modelling of compositional zonations in the Brattaskjol olivine grains imply that the Brattaskjol macrocusts were mobilized and transported to the surface from their mid-crustal storage within a few weeks (at most in 9-37 days). Trends in clinopyroxene macrocryst compositions and the scarcity of plagioclase indicate that the mid-crustal cotectic assemblage was olivine and clinopyroxene, with plagioclase joining the fractionating mineral assemblage later. In all, the crystal cargoes in the Brattaskjol and Hvammsmtili ankaramites are composed of agitated wehrlitic or plagioclase wehrlitic crystal mushes that crystallized over a large temperature interval at mid-crustal depths.Peer reviewe
Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand
Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism ((206)pb/(204)pb((i)) = 18.6, (207)pb/(204)pb)((i)) = 15.62, (208)pb/(204)pb((i)) = 38.6, Sr-87/Sr-86((i)) = 0.7063-0.7074, epsilon Nd-(i) = -2.1 - +0.1 and epsilon Hf-(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: (206)pb/Pb-204((i)) = 18.7 to 19.4, Pb-207/Pb-204((i)) = 15.60 to 15.65, Pb-208/Pb-204((i)) = 38.6 to 39.4, Sr-87/(86)((i)) = 0.7031 to 0.7068, epsilon Nd-(i) = +4.5 to +8.0 and epsilon Hf-(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (Pb-206/Pb-204((i)) approximate to 20.5, Pb-207/Pb-204((i)) 15.7, Pb-208/(204) Pb-(i) approximate to 40.0, epsilon Nd-(i) approximate to 4.5 and epsilon Hf-(i) 4.0). In contrast to the inboard HIMU-like magmas, the radiogenic Pb-207/Pb-204 and relatively unradiogenic Nd and Hf require an ancient enriched source component. This magmatism is interpreted to represent melting of a fossilised HIMU source that resided under the Hikurangi Plateau. These genetically distinct but isotopically similar intraplate reservoirs were separated by the down -going slab under Gondwana's former active margin. Ancient HIMU magmatism was locally replaced by the young HIMU-like type which became dominant across Zealandia during the Late Cretaceous. Our research suggests that the sources for alkaline intraplate magmas with compositions similar to ocean island basalts can be formed either with or without the involvement of a plume-derived component. (C) 2017 Elsevier B.V. All rights reserved
Preservation of an Archaean whole rock Re-Os isochron for the Venetia lithospheric mantle: evidence for rapid crustal recycling and lithosphere stabilisation at 3.3 Ga
Re-Os and platinum group element analyses are reported for peridotite xenoliths from the 533 Ma Venetia kimberlite cluster situated in the Limpopo Mobile Belt, the Neoarchaean collision zone between the Kaapvaal and Zimbabwe Cratons. The Venetian xenoliths provide a rare opportunity to examine the state of the cratonic lithosphere prior to major regional metasomatic disturbance of Re-Os systematics throughout the Phanerozoic. The 32 studied xenoliths record Si-enrichment that is characteristic of the Kaapvaal lithospheric mantle and can be subdivided into five groups based on Re-Os analyses. The most pristine group I samples (n = 13) display an approximately isochronous relationship and fall on a 3.28 ± 0.17 Ga (95% conf. int.) reference line that is based on their mean TMA age. This age overlaps with the formation age of the Limpopo crust at 3.35-3.28 Ga. The group I samples derive from ∼50 to ∼170 km depth, suggesting coeval melt depletion of the majority of the Venetia lithospheric mantle column. Group II and III samples have elevated Re/Os due to Re addition during kimberlite magmatism. Group II has otherwise undergone a similar evolution as the group I samples with overlapping 187Os/188Os at eruption age: 187Os/188OsEA, while group III samples have low Os concentrations, unradiogenic 187Os/188OsEA and were effectively Re-free prior to kimberlite magmatism. The other sample groups (IV and V) have disturbed Re-Os systematics and provide no reliable age information. A strong positive correlation is recorded between Os and Re concentrations for group I samples, which is extended to groups II and III after correction for kimberlite addition. This positive correlation precludes a single stage melt depletion history and indicates coupled remobilisation of Re and Os. The combination of Re-Os mobility, preservation of the isochronous relationship, correlation of 187Os/188Os with degree of melt depletion and lack of radiogenic Os addition puts tight constraints on the formation and subsequent evolution of Venetia lithosphere. First, melt depletion and remobilisation of Re and Os must have occurred within error of the 3.28 Ga mean TMA age. Second, the refractory peridotites contain significant Re despite recording >40% melt extraction. Third, assuming that Si-enrichment and Re-Os mobility in the Venetia lithospheric mantle were linked, this process must have occurred within ∼100 Myr of initial melt depletion in order to preserve the isochronous relationship. Based on the regional geological evolution, we propose a rapid recycling model with initial melt depletion at ∼3.35 Ga to form a tholeiitic mafic crust that is recycled at ∼3.28 Ga, resulting in the intrusion of a TTG suite and Si-enrichment of the lithospheric mantle. The non-zero primary Re contents of the Venetia xenoliths imply that TRD model ages significantly underestimate the true depletion age even for highly depleted peridotites. The overlap of the ∼2.6 Ga TRD ages with the time of the Kaapvaal-Limpopo collision is purely fortuitous and has no geological significance. Hence, this study underlines the importance of scrutiny if age information is to be derived from whole rock Re-Os analyses