19,315 research outputs found

    Myeloablative autologous stem-cell transplantation for severe scleroderma

    Get PDF

    Study of the electron trigger efficiency of the CMS Experiment using test beam data

    Get PDF
    A study of the electron identification and selection efficiency of the L1 Trigger algorithm has been performed using the combined ECAL/HCAL test beam data. A detailed discussion of the electron isolation and its impact on the selection efficiency is presented. The L1 electron algorithm is studied for different beam energies and the results indicate that efficiencies of 98% or more can be achieved for electrons with energies between 15 and 100 GeV. The fraction of charged hadrons with energies from 3 up to 100 GeV rejected by the L1 electron trigger algorithm is estimated to be larger than 93%.Comment: 22 pages, 14 figure

    First Results of the Search for Neutrinoless Double-Beta Decay with the NEMO 3 Detector

    Get PDF
    The NEMO 3 detector, which has been operating in the Frejus underground laboratory since February 2003, is devoted to the search for neutrinoless double beta decay (bb0nu). Half-lives of the two neutrino double beta decays (bb2nu) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7kg of 100Mo and ~1 kg of 82Se. The corresponding lower limits for the half-lives are 4.6 x 10^23 years for 100Mo and 1.0 x10^23 years for 82Se (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are < 1.7-4.9 eV for 82Se

    Tools and Procedures for the CTA Array Calibration

    Get PDF
    The Cherenkov Telescope Array (CTA) is an international initiative to build the next generation ground-based very-high-energy gamma-ray observatory. Full sky coverage will be assured by two arrays, one located on each of the northern and southern hemispheres. Three different sizes of telescopes will cover a wide energy range from tens of GeV up to hundreds of TeV. These telescopes, of which prototypes are currently under construction or completion, will have different mirror sizes and fields-of-view designed to access different energy regimes. Additionally, there will be groups of telescopes with different optics system, camera and electronics design. Given this diversity of instruments, an overall coherent calibration of the full array is a challenging task. Moreover, the CTA requirements on calibration accuracy are much more stringent than those achieved with current Imaging Atmospheric Cherenkov Telescopes, like for instance: the systematic errors in the energy scale must not exceed 10%.In this contribution we present both the methods that, applied directly to the acquired observational CTA data, will ensure that the calibration is correctly performed to the stringent required precision, and the calibration equipment that, external to the telescopes, is currently under development and testing. Moreover, some notes about the operative procedure to be followed with both methods and instruments, will be described. The methods applied to the observational CTA data include the analysis of muon ring images, of carefully selected cosmic-ray air shower images, of the reconstructed electron spectrum and that of known gamma-ray sources and the possible use of stereo techniques hardware-independent. These methods will be complemented with the use of calibrated light sources located on ground or on board unmanned aerial vehicles.Comment: All CTA contributions at arXiv:1709.0348
    corecore