16 research outputs found

    Metal artefacts severely hamper magnetic resonance imaging of the rotator cuff tendons after rotator cuff repair with titanium suture anchors

    Get PDF
    BackgroundThe rate of retear after rotator cuff surgery is 17%. Magnetic resonance imaging (MRI) scans are used for confirmative diagnosis of retear. However, because of the presence of titanium suture anchors, metal artefacts on the MRI are common. The present study evaluated the diagnostic value of MRI after rotator cuff tendon surgery with respect to assessing the integrity as well as the degeneration and atrophy of the rotator cuff tendons when titanium anchors are in place.MethodsTwenty patients who underwent revision surgery of the rotator cuff as a result of a clinically suspected retear between 2013 and 2015 were included. The MRI scans of these patients were retrospectively analyzed by four specialized shoulder surgeons and compared with intra-operative findings (gold standard). Sensitivity and interobserver agreement among the surgeons in assessing retears as well as the Goutallier and Warner classification were examined.ResultsIn 36% (range 15% to 50%) of the pre-operative MRI scans, the observers could not review the rotator cuff tendons. When the rotator cuff tendons were assessable, a diagnostic accuracy with a mean sensitivity of 0.84 (0.70 to 1.0) across the surgeons was found, with poor interobserver agreement (kappa = 0.12).ConclusionsMetal artefacts prevented accurate diagnosis from MRI scans of rotator cuff retear in 36% of the patients studied.</jats:sec

    Diaphragm-Based Position Verification to Improve Daily Target Dose Coverage in Proton and Photon Radiation Therapy Treatment of Distal Esophageal Cancer

    Get PDF
    Purpose: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. Methods and Materials: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). Results: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (>= 94% of the dose in 98% of the volume [D-98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D-98%: IMPT 94% +/- 5%, VMAT 96% +/- 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. Conclusions: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging. (C) 2021 Elsevier Inc. All rights reserved

    Reproducibility of the lung anatomy under active breathing coordinator control:Dosimetric consequences for scanned proton treatments

    Get PDF
    Purpose The treatment of moving targets with scanned proton beams is challenging. For motion mitigation, an Active Breathing Coordinator (ABC) can be used to assist breath-holding. The delivery of pencil beam scanning fields often exceeds feasible breath-hold durations, requiring high breath-hold reproducibility. We evaluated the robustness of scanned proton therapy against anatomical uncertainties when treating nonsmall-cell lung cancer (NSCLC) patients during ABC controlled breath-hold. Methods Four subsequent MRIs of five healthy volunteers (3 male, 2 female, age: 25-58, BMI: 19-29) were acquired under ABC controlled breath-hold during two simulated treatment fractions, providing both intrafractional and interfractional information about breath-hold reproducibility. Deformation vector fields between these MRIs were used to deform CTs of five NSCLC patients. Per patient, four or five cases with different tumor locations were modeled, simulating a total of 23 NSCLC patients. Robustly optimized (3 and 5 mm setup uncertainty respectively and 3% density perturbation) intensity-modulated proton plans (IMPT) were created and split into subplans of 20 s duration (assumed breath-hold duration). A fully fractionated treatment was recalculated on the deformed CTs. For each treatment fraction the deformed CTs representing multiple breath-hold geometries were alternated to simulate repeated ABC breath-holding during irradiation. Also a worst-case scenario was simulated by recalculating the complete treatment plan on the deformed CT scan showing the largest deviation with the first deformed CT scan, introducing a systematic error. Both the fractionated breath-hold scenario and worst-case scenario were dosimetrically evaluated. Results Looking at the deformation vector fields between the MRIs of the volunteers, up to 8 mm median intra- and interfraction displacements (without outliers) were found for all lung segments. The dosimetric evaluation showed a median difference in D-98% between the planned and breath-hold scenarios of -0.1 Gy (range: -4.1 Gy to 2.0 Gy). D-98% target coverage was more than 57.0 Gy for 22/23 cases. The D-1 cc of the CTV increased for 21/23 simulations, with a median difference of 0.9 Gy (range: -0.3 to 4.6 Gy). For 14/23 simulations the increment was beyond the allowed maximum dose of 63.0 Gy, though remained under 66.0 Gy (110% of the prescribed dose of 60.0 Gy). Organs at risk doses differed little compared to the planned doses (difference in mean doses <0.9 Gy for the heart and lungs, <1.4% difference in V-35 [%] and V-20 [%] to the esophagus and lung). Conclusions When treating under ABC controlled breath-hold, robustly optimized IMPT plans show limited dosimetric consequences due to anatomical variations between repeated ABC breath-holds for most cases. Thus, the combination of robustly optimized IMPT plans and the delivery under ABC controlled breath-hold presents a safe approach for PBS lung treatments

    A comprehensive motion analysis - consequences for high precision image-guided radiotherapy of esophageal cancer patients

    Get PDF
    Background and purpose When treating patients for esophageal cancer (EC) with photon or proton radiotherapy (RT), breathing motion of the target and neighboring organs may result in deviations from the planned dose distribution. The aim of this study was to evaluate the magnitude and dosimetric impact of breathing motion. Results were based on comparing weekly 4D computed tomography (4D CT) scans with the planning CT, using the diaphragm as an anatomical landmark for EC. Material and methods A total of 20 EC patients were included in this study. Diaphragm breathing amplitudes and off-sets (changes in position with respect to the planning CT) were determined from delineated left diaphragm structures in weekly 4D CT-scans. The potential dosimetric impact of respiratory motion was shown in several example patients for photon and proton radiotherapy. Results Variation in diaphragm amplitudes were relatively small and ranged from 0 to 0.8 cm. However, the measured off-sets were larger, ranging from -2.1 to 1.9 cm. Of the 70 repeat CT-scans, the off-set exceeded the ITV-PTV margin of 0.8 cm during expiration in 4 CT-scans (5.7%) and during inspiration in 13 CT-scans (18.6%). The dosimetric validation revealed under- and overdosages in the VMAT and IMPT plans. Conclusions Despite relatively constant breathing amplitudes, the variation in the diaphragm position (off-set), and consequently tumor position, was clinically relevant. These motion effects may result in either treatments that miss the target volume, or dose deviations in the form of highly localized over- or underdosed regions

    Treating moving targets with scanned proton therapy:Is 5 mm initial tumour motion a safe threshold?

    No full text
    Purpose/ObjectivePencil beam scanning (PBS) is a highly conformal technology to treat cancer. The time structure of PBS makes the treatment of moving tumours challenging due to the interplay effect. According to literature, PBS in combination with rescanning can be safely applied without motion mitigation strategies to lung tumours that move 5 mm or less. However, the question is whether the motion measured during treatment simulation will remain below 5 mm during the course of treatment. We investigated the inter-fractional lung tumour motion variation in a unique data set providing five repeated 4DCTs per patient, to evaluate if a 5 mm threshold is a reliable indicator for considering PBS treatments. Material/MethodsFor 19 NSCLC patients (11 male, 8 female, age: 47-89, stage: II-IV) weekly 4DCT imaging was performed during treatment simulation before and during the treatment course to monitor the anatomical changes and differences in motion. Gross tumour volumes (GTV) were delineated on the maximum inspiration and expiration phases of the planning 4DCT and on the weekly repeat 4DCTs. GTV volume changes were acquired and the weekly inter-fraction motion variation was evaluated by measuring the GTV centroid translations in all three directions. ResultsThe patients showed a median initial tumour motion of 1.3 mm (range: 0.0 – 5.1 mm) for a median initial GTV volume of 28.7 cm3 (range: 1.9 – 430.0 cm3). Figure 1 shows the measured 3D-vector motion for week 0 (before start treatment) and week 1-5 (treatment course). The maximum deviation from the initial measured motion for the patients was on average 2.1 mm (range: 0.3 – 7.9 mm). Centroid displacements remained under 5 mm for 16 out of 19 patients over the entire course of treatment. For patients number 3, 4 and 11, an increase in motion up to a maximum of respectively 9.1, 11.2, and 6.5 mm was observed (Figure 2). GTV volumes for 15 out of 19 patients shrank during treatment with a median decrease of 35.4% (range: 10.8% - 63.7%), and a median absolute volume change of 8.3 cm3 (range: 0.5 - 105.9 cm3). ConclusionEven if the lung tumour motion during planning simulation is under 5 mm, variations in motion amplitude and larger motions can still occur during the course of treatment. This indicates that the use of daily tumour motion evaluation is required for PBS treatments, especially for hypo-fractionated treatments. Future work will include a risk-stratification for motion variations in lung patients based on initial tumour motion, tumour position and tumour volume for different PBS spot sizes, time structure and prescribed treatment courses.<br/

    Treating moving targets with scanned proton therapy: Is 5 mm initial tumour motion a safe threshold?

    No full text
    Purpose/Objective Pencil beam scanning (PBS) is a highly conformal technology to treat cancer. The time structure of PBS makes the treatment of moving tumours challenging due to the interplay effect. According to literature, PBS in combination with rescanning can be safely applied without motion mitigation strategies to lung tumours that move 5 mm or less. However, the question is whether the motion measured during treatment simulation will remain below 5 mm during the course of treatment. We investigated the inter-fractional lung tumour motion variation in a unique data set providing five repeated 4DCTs per patient, to evaluate if a 5 mm threshold is a reliable indicator for considering PBS treatments. Material/Methods For 19 NSCLC patients (11 male, 8 female, age: 47-89, stage: II-IV) weekly 4DCT imaging was performed during treatment simulation before and during the treatment course to monitor the anatomical changes and differences in motion. Gross tumour volumes (GTV) were delineated on the maximum inspiration and expiration phases of the planning 4DCT and on the weekly repeat 4DCTs. GTV volume changes were acquired and the weekly inter-fraction motion variation was evaluated by measuring the GTV centroid translations in all three directions. Results The patients showed a median initial tumour motion of 1.3 mm (range: 0.0 – 5.1 mm) for a median initial GTV volume of 28.7 cm3 (range: 1.9 – 430.0 cm3). Figure 1 shows the measured 3D-vector motion for week 0 (before start treatment) and week 1-5 (treatment course). The maximum deviation from the initial measured motion for the patients was on average 2.1 mm (range: 0.3 – 7.9 mm). Centroid displacements remained under 5 mm for 16 out of 19 patients over the entire course of treatment. For patients number 3, 4 and 11, an increase in motion up to a maximum of respectively 9.1, 11.2, and 6.5 mm was observed (Figure 2). GTV volumes for 15 out of 19 patients shrank during treatment with a median decrease of 35.4% (range: 10.8% - 63.7%), and a median absolute volume change of 8.3 cm3 (range: 0.5 - 105.9 cm3). Conclusion Even if the lung tumour motion during planning simulation is under 5 mm, variations in motion amplitude and larger motions can still occur during the course of treatment. This indicates that the use of daily tumour motion evaluation is required for PBS treatments, especially for hypo-fractionated treatments. Future work will include a risk-stratification for motion variations in lung patients based on initial tumour motion, tumour position and tumour volume for different PBS spot sizes, time structure and prescribed treatment courses
    corecore