10 research outputs found

    Modeling Transmission of Avian Influenza Viruses at the Human-Animal-Environment Interface in Cuba

    Get PDF
    TThe increasing geographical spread of highly pathogenic avian influenza viruses (HPAIVs) is of global concern due to the underlying zoonotic and pandemic potential of the virus and its economic impact. An integrated One Health model was developed to estimate the likelihood of Avian Influenza (AI) introduction and transmission in Cuba, which will help inform and strengthen risk-based surveillance activities. The spatial resolution used for the model was the smallest administrative district (“Consejo Popular”). The model was parameterised for transmission from wild birds to poultry and pigs (commercial and backyard) and then to humans. The model includes parameters such as risk factors for the introduction and transmission of AI into Cuba, animal and human population densities; contact intensity and a transmission parameter (β). Areas with a higher risk of AI transmission were identified for each species and type of production system. Some variability was observed in the distribution of areas estimated to have a higher probability of AI introduction and transmission. In particular, the south-western and eastern regions of Cuba were highlighted as areas with the highest risk of transmission. These results are potentially useful for refining existing criteria for the selection of farms for active surveillance, which could improve the ability to detect positive cases. The model results could contribute to the design of an integrated One Health risk-based surveillance system for AI in Cuba. In addition, the model identified geographical regions of particular importance where resources could be targeted to strengthen biosecurity and early warning surveillance

    Modeling Transmission of Avian Influenza Viruses at the Human-Animal-Environment Interface in Cuba

    Get PDF
    TThe increasing geographical spread of highly pathogenic avian influenza viruses (HPAIVs) is of global concern due to the underlying zoonotic and pandemic potential of the virus and its economic impact. An integrated One Health model was developed to estimate the likelihood of Avian Influenza (AI) introduction and transmission in Cuba, which will help inform and strengthen risk-based surveillance activities. The spatial resolution used for the model was the smallest administrative district (“Consejo Popular”). The model was parameterised for transmission from wild birds to poultry and pigs (commercial and backyard) and then to humans. The model includes parameters such as risk factors for the introduction and transmission of AI into Cuba, animal and human population densities; contact intensity and a transmission parameter (β). Areas with a higher risk of AI transmission were identified for each species and type of production system. Some variability was observed in the distribution of areas estimated to have a higher probability of AI introduction and transmission. In particular, the south-western and eastern regions of Cuba were highlighted as areas with the highest risk of transmission. These results are potentially useful for refining existing criteria for the selection of farms for active surveillance, which could improve the ability to detect positive cases. The model results could contribute to the design of an integrated One Health risk-based surveillance system for AI in Cuba. In addition, the model identified geographical regions of particular importance where resources could be targeted to strengthen biosecurity and early warning surveillance

    The Implementation Gap in Emerging Disease Risk Management in the Wildlife Trade.

    No full text
    The wildlife trade has been characterized as one of the biggest risk factors in the emergence of new infectious diseases. In the shadow of COVID-19, there is growing political and scientific urgency to manage this risk. Existing studies and experiences make it clear that something must be done but are less clear on how to get it done. It is a quite different task to accumulate evidence on the presence of pathogens, their locations in the supply chain, and their spillover to new hosts than to identify effective ways to prevent and mitigate emerging disease under real-world conditions. This study sought peer-reviewed evidence on the effectiveness, acceptability, feasibility, and sustainability of risk reduction interventions for zoonotic and nonzoonotic disease emergence in the wildlife trade. An environmental scan triangulated information from a scoping review following a Preferred Reporting Items for Systematic Reviews and Meta-analysis extension for scoping review protocol, two narrative literature reviews, and key informant interviews of 26 international wildlife health experts. Existing literature has been inattentive to program implementation or evaluation studies. There was insufficient evidence to identify effective and sustainable risk management actions. Studies on the effects of social, epidemiologic, and ecologic context on intervention success was lacking, as was research using a complex systems perspective. The lack of systematic program evaluations or implementation studies leaves decision makers with insufficient evidence to select interventions likely to be acceptable, effective, and sustainable within and across the disparate context of the wildlife trade. This necessitates adaptive risk management and innovations in program implementation and evaluation to ensure evidence-based risk management

    Genetic Features of Extended-Spectrum β-Lactamase-Producing Escherichia coli from Poultry in Mayabeque Province, Cuba.

    Get PDF
    A total of 434 poultry cloacal samples were collected from seven different farms in different years (2013-2015) in the Cuban province of Mayabeque and analyzed for the presence of third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec). Sixty-two 3GC-R-Ec isolates were recovered in total from the farms, with detection rates of 2.9% in 2013, 10.3% in 2014, and 28.7% in 2015. Characterization of 32 3GC-R-Ec isolates revealed the presence of the extended-spectrum β-lactamase (ESBL) genes blaCTX-M-1 (n = 27), blaCTX-M-15 (n = 4), and blaCTX-M-1 together with blaLAP-2 (n = 1). The isolates also contained different proportions of genes conferring decreased susceptibility to sulfonamides (sul1, sul2, sul3), trimethoprim (dfrA1, dfrA7, dfrA12, dfrA14, dfrA17), tetracyclines (tet(A), tet(B)), aminoglycosides (aac(6')-Ib-cr, strA, strB), chloramphenicol (cmlA1, floR), macrolides (mph(A), mph(D)), and quinolones (qnrS, qnrB, aac(6')-Ib-cr) as well as mutations in the fluoroquinolone-resistance determining regions of GyrA (S83L, D87N, D87Y) and ParC (S80I, E84G). The isolates belonged to 23 different sequence types and to phylogroups A (n = 25), B1 (n = 5), and D (n = 2), and they contained plasmid-associated incompatibility groups FII, X1, HI1, HI2, N, FIA, and FIB. These findings reveal a genetically diverse population of multiresistant ESBL-producing E. coli in poultry farms in Cuba, which suggests multiple sources of contamination and the acquisition of antibiotic resistance genes

    Association between the swine production areas and the human population in Pinar del Río province, Cuba

    No full text
    Aim: The aim of this study was to demonstrate the association between high human population density and high pig production in the province of Pinar del Río, Cuba. Materials and Methods: Records on pig movements at the district level in Pinar del Río province from July 2010 to December 2012 were used in the study. A network analysis was carried out considering districts, as nodes, and movements of pigs between them represented the edges. The in-degree parameter was calculated using R 3.1.3 software. Graphical representation of the network was done with Gephi 0.8.2, and ArcGIS 10.2. was used for the spatial analysis to detect clusters by the Getis-Ord Gi* method and visualize maps as well. Results: Significant spatial clusters of high values (hot spots) and low values (cold spots) of in-degree were identified. A cluster of high values was located in the central area of the province, and a cluster of low values involving municipalities of the Western zone was detected. Logistic regression demonstrated that a higher human population density per district was associated (odds ratio=16.020, 95% confidence interval: 1.692-151.682, p=0.016) with areas of high pork production. Conclusion: Hot spot of swine production in Pinar del Río is associated with human densely populated districts, which may suppose a risk of spillover of pathogens able to infect animals and humans. These results can be considered in strategy planning in terms of pork production increases and improvements of sanitary, commercial, and economic policies by decision-makers

    Classical Swine Fever in a Cuban Zone Intended for Eradication : Spatiotemporal Clustering and Risk Factors

    No full text
    Classical Swine Fever (CSF) is an endemic disease in Cuba, and an eradication strategy by zones is planned by the Official Veterinary Service. The aim of this study was to identify high-risk areas of CSF and the risk factors associated with the disease occurrence in the Pinar del Rio province, one of the prioritized areas in the eradication strategy. The outbreak occurrence at district level was analyzed through a 7-year period (2009 to 2015). A high-risk cluster (RR = 5.13, 95% CI 3.49-7.56) was detected during the last 2 years of the study period in the eastern half of the province, with 38 out of 97 districts included. The rate of CSF-affected holdings had a significant increase during 2014-2015 and seems to have occurred mainly in the high-risk cluster area. Swine population density by district (heads/km(2)) and road length (km) by district were associated with the disease outbreak occurrence. These results provide new insights into the knowledge of the epidemiology of the disease in Cuban endemic conditions and can contribute to improving the control and the eradication strategy in this situation

    Influenza aviar. Oportunidades de mejora del sistema de vigilancia activa basado en riesgo en Cuba

    Get PDF
    El perfeccionamiento continuo de la vigilancia y el control de la influenza aviar (IA) son prioridades a nivel mundial debido a la permanencia de esta amenaza a escala global. El objetivo del presente trabajo fue identificar oportunidades de mejora en el sistema de vigilancia activa de la IA establecido en Cuba. Mediante análisis geoespacial multicriterio se mapeó con resolución de 1 km2. Adicionalmente, se tuvo en cuenta la existencia de zonas de contigüidad entre granjas avícolas (< 3 km) donde pudiera verse favorecida la difusión del agente causal en caso de introducción. Como resultado, se identificaron áreas con muy alto riesgo de ocurrencia, ya sea por exposición o difusión que, en ocasiones, se favoreció por la contigüidad entre granjas avícolas comerciales. A partir de estos hallazgos se logró refinar el criterio preexistente para la selección de granjas a ser investigadas durante la vigilancia activa, lo cual pudiera mejorar la capacidad de detección de casos positivos. La precisión y el manejo del riesgo de difusión son de gran importancia porque suele ser el principal determinante de la magnitud de la epidemia. Se concluye que existen áreas estratégicas y de marcada importancia hacia donde se deben dirigir, prioritariamente, los principales recursos para fortalecer la bioseguridad y la vigilancia encaminada a la alerta rápida

    Influenza aviar. Oportunidades de mejora del sistema de vigilancia activa basado en riesgo en Cuba

    No full text
    El perfeccionamiento continuo de la vigilancia y el control de la influenza aviar (IA) son prioridades a nivel mundial debido a la permanencia de esta amenaza a escala global. El objetivo del presente trabajo fue identificar oportunidades de mejora en el sistema de vigilancia activa de la IA establecido en Cuba. Mediante análisis geoespacial multicriterio se mapeó con resolución de 1 km2. Adicionalmente, se tuvo en cuenta la existencia de zonas de contigüidad entre granjas avícolas (< 3 km) donde pudiera verse favorecida la difusión del agente causal en caso de introducción. Como resultado, se identificaron áreas con muy alto riesgo de ocurrencia, ya sea por exposición o difusión que, en ocasiones, se favoreció por la contigüidad entre granjas avícolas comerciales. A partir de estos hallazgos se logró refinar el criterio preexistente para la selección de granjas a ser investigadas durante la vigilancia activa, lo cual pudiera mejorar la capacidad de detección de casos positivos. La precisión y el manejo del riesgo de difusión son de gran importancia porque suele ser el principal determinante de la magnitud de la epidemia. Se concluye que existen áreas estratégicas y de marcada importancia hacia donde se deben dirigir, prioritariamente, los principales recursos para fortalecer la bioseguridad y la vigilancia encaminada a la alerta rápida
    corecore